Ozone Transport Commission/Mid-Atlantic Northeastern Visibility Union 2011 Based Modeling Platform Support Document – October 2018 Update

> Ozone Transport Commission 2nd Version October 18, 2018 1st Version November 15, 2016

Project Manager: Joseph Jakuta Contributors: Michael Ku, Joseph Jakuta, David Healy, Michael Woodman, Kurt Kebschull

Contents

Contents	i
List of Figures	V
List of Tables	xiv
List of Acronyms	xvii
Preamble	xix
Section 1. Introduction	1-1
Purpose	1-1
Document Outline	1-1
History	
Clean Air Act	1-2
Geographic Definitions	1-4
Participants	1-5
OTC Air Directors	
OTC Modeling Committee	
OTC Modeling Planning Group	
OTC Technical Support Document Workgroup	
OTC Modeling Centers	
MANE-VU Technical Support Committee	1-6
MARAMA Emission Inventory Leads Committee	1-6
Schedule	1-6
Concentual Model	1-7
Ωτοπρ	1_7
Visihility	1_7
Rase Vear Selection	1-7 1_8
Euture Vear Selection	1-0 1_8
Potoroncos	1-0 1 0
Nelelences	
Section 2. Evaluation of Meteorological Modeling using WRF	2-1
Overview	2-1
Assessment	2-1
Model Performance Analyzed by EPA	2-3
Model Performance Analyzed by OTC	2-3
Summary	2-10
References	2-10
Section 3. Evaluation of Biogenic Model Versions	
Overview	
Assessment	
References	
Section 4. Emissions Inventories and Processing for 2011 12km Base Year Simulat	ion4-14
Overviews	Л 1 Л
	4-14 л 1л
ENTAU EUU	
Alhila	

Alpha 2	4-14
Beta/Beta 2	4-14
Gamma	4-15
Emission Inventory Sectors	4-16
Speciation	4-18
Spatial Allocation	4-18
Temporal Allocation	4-18
SMOKE Processed Emission Results	4-19
References	4-25
Section 5. 8-hour Ozone/Regional Haze Modeling Using the CMAQ and CAMx N	Aodeling Platforms.5-26
Air Quality Modeling Domain	5-26
Initial/Boundary Conditions/Initial Conditions	5-26
Alpha, Alpha 2, and Beta/Beta2 Modeling	5-26
Gamma Modeling	5-26
Photochemical Modeling Configurations	5-28
Alpha, Alpha 2, and Beta/Beta2 CMAQ Modeling	5-29
Gamma and Gamma 2 CMAQ Modeling	5-29
CAMx-APCA Modeling	5-29
References	5-30
Section 6. Model Performance and Assessment of 8-hour Ozone/Regional Haze	Modeling6-31
Air Quality Model Evaluation and Accordment	C 21
All Quality Would Evaluation and Assessment	0-51 6 21
Summany of Measured Data	0-51 6_21
Evaluation of CMAO predictions	
Daily Maximum 8-hour Ozone Concentration	6-32
Gamma Platform Improvements	
Evaluation of Ozone Aloft	6-40
Evaluation of Fine Particulate Matter	
Note: When looking at MAGE in the figure above, blue and green colors indica	te better model
performance.	
Evaluation of Visibility	6-47
Evaluation of CAMx predictions	6-58
Summary	6-64
, References	6-64
Section 7. Evaluation of 4km Nested Gridding	7-65
Overview	7-65
Meteorology Processing	7-65
Emission Inventory	
Results	7-66
Conclusion	
References	
Section 8. Emissions Inventories and Processing for 2017/2018/2020/2023/202	8 12 km Future Year

Simulation 8-73

Emission Inventory Sectors	8-73
US Future Year Base Case Emissions Inventories	8-73
Canadian Future Base Case Emissions	8-74
Application of SMOKE	8-75
SMOKE Processed Emission Results	8-75
References	8-81

Section 9. Emissions Inventories and Processing for 2028 Visibility Control 12 km Future Year Simulation 9-83

2028 Visibility Control Inventory Development	9-83
Intra-RPO/Inter-RPO Ask 1	9-83
Intra-RPO/Inter-RPO Ask 2	9-83
Intra-RPO/Inter-RPO Ask 3	9-86
Intra-RPO/Inter-RPO Ask 4	9-91
Intra-RPO Ask 5	9-91
Intra-RPO Ask 6/Inter-RPO Ask 5	9-97
Federal Ask 1, 2, & 3	9-97
Temporalization	9-97
2028 Visibility Control Inventory Results	9-97
ERTAC EGU Results	9-97
EMF Results	9-99
References	9-100
Section 10. Relative Response Factor (RRF) and "Modeled Attainment Test" (MAT)	10-101
Quertion	10 101
Overview	10-101
Step 1. Calculation of DVC	10-101
Step 1 - Calculation of DDC	10-101
Step 2 - Calculation of DV/C	10-102
Step 3 - Computation of DVF	10-103
Land-Water Interface issues	10-103
References	10-109
Section 11. Projected 8-hour Ozone Air Quality over the Ozone Transport Region	11-110
Overview	
Ozone Results	11-110
Section 12. Projected Visibility Impairment in the MANE-VU Region	12-124
Calculation Techniques	12-124
Results	12-125
Alpha 2 Results	12-125
Gamma Results	12-128
References	
Section 13. Source Apportionment Modeling Results in the Ozone Transport Region	13-133
Overview	
Tagging Methodology	

Ozone Resi 2023 De Contribu References	ults sign Value Results ition Assessment Results	
Section 14. E	pisodic Modeling using the 2011 Ozone Transport Commission	n Modeling Platform14-155
Overview		
Selection o	f Episodes	
Available	e Data Sets	
Sufficien	t Time Span	
Meteoro	logical Conditions	
Summar	у	
Modeling P	Platform	
Model S	election	
Emissior	is Inventory	
Monitor	to Model Comparison	
Protocol		
References		
Appendix A.	Model Evaluation Statistic Formulae	A-167
Appendix B.	Emissions Inventory Files	В-168
Appendix C.	List of Air Quality Monitors in OTC Modeling Domain	C-182
Appendix D.	Additional Source Apportionment Modeling Results	D-192
Sector Sum State Sumr	maries for Select Monitors naries for Select Monitors	D-192 D-195

List of Figures

Figure 1-1: 2008 Ozone NAAQS Designations in the OTR as originally designated in 2012	1-4
Figure 1-2: 2015 Ozone NAAQS Designations in the OTR as originally designated in 2016	1-4
Figure 2-1: Extent of EPA CONUS domain with the OTR Modeling Domain in grey and the OTR states ir	n
blue	2-1
Figure 2-2: Monthly average Bias (RMTA – WRF) for Temp	2-5
Figure 2-3: Monthly average Bias (RMTA – WRF) for Mixing Ratio ¹	2-5
Figure 2-4: Monthly average absolute error for temp. ¹	2-5
Figure 2-5: Monthly average absolute error for mixing ratio ¹	2-5
Figure 2-6: Correlation coefficients for temp. ¹	2-5
Figure 2-7: Correlation coefficients for mixing ratio ¹	2-5
Figure 2-8: Diurnal BIAS (RMTA – WRF) for temp. in Feb. ¹	2-6
Figure 2-9: Diurnal BIAS (RMTA – WRF) for mixing ratio in Feb. ¹	2-6
Figure 2-10: Diurnal BIAS (RMTA – WRF) for temp. in Aug. ¹	2-6
Figure 2-11: Diurnal BIAS (RMTA – WRF) mixing ratio in Aug. ¹	2-6
Figure 2-12: Diurnal absolute error for temp. in Feb. ¹	2-6
Figure 2-13: Diurnal absolute error for mixing ratio in Feb. ¹	2-6
Figure 2-14: Diurnal absolute error for temp. in Aug. ¹	2-7
Figure 2-15: Diurnal absolute error for mixing ratio in Aug. ¹	2-7
Figure 2-16: Diurnal correlation coefficient for temp. in Feb. ¹	2-7
Figure 2-17: Diurnal correlation coefficient for mixing ratio in Feb. ¹	2-7
Figure 2-18: Diurnal correlation coefficient for temp. in Aug. ¹	2-7
Figure 2-19: Diurnal correlation coefficient for mixing ratio in Au. ¹	2-7
Figure 2-20: Seasonal Frequency of CALIPSO PBL height	2-8
Figure 2-21: CALIPSO to WRF (PBL height ratio) Winter (D/J/F) 2011 (blue and red dots over land and	
water respectively)	2-9
Figure 2-22 CALIPSO to WRF (PBL height ratio) Summer (J/J/A) 2011 (blue and red dots over land and	
water respectively)	2-9
Figure 2-23: CALIPSO to WRF (PBL height ratio) Winter (D/J/F) 2011	2-9
Figure 2-24: CALIPSO to WRF (PBL height ratio) Summer (J/J/A) 2011	2-9
Figure 2-25: CALIPSO to WRF (PBL height ratio) Spring (M/A/M) 20112	2-10
Figure 2-26: CALIPSO to WRF (PBL height ratio) Fall (S/O/N) 20112	-10
Figure 3-1: MFE % for OTR monitors for CMAQ model runs conducted using BEIS 3.61 (left axis) and BE	EIS
3.6 (bottom axis)3	8-11
Figure 3-2: MFB % for OTR monitors for CMAQ model runs conducted using BEIS 3.61 (left axis) and BI	EIS
3.6 (bottom axis)3	-11
Figure 3-3: MAGE (ppb) for OTR monitors for CMAQ model runs conducted using BEIS 3.61 (left axis) a	and
BEIS 3.6 (bottom axis)3	-12
Figure 4-1: Comparison of temporalization of SMOKE defaults, MANE-VU gas temporal profile, and	
operational data from a typical gas fired Small EGU in MD4	-19
Figure 4-2: MARAMA Alpha 2 NO _x SMOKE Gridded Emissions (Typical Summer Day, June 24, 2011)4	-20
Figure 4-3: MARAMA Alpha 2 NO _x SMOKE Gridded Emissions (High Ozone Day, July 22, 2011)4	-20
Figure 4-4: MARAMA Alpha 2 VOC All SMOKE Gridded Emissions (Typical Summer Day, June 24, 2011)	.4-
21	
Figure 4-5: MARAMA Alpha 2 VOC All SMOKE Gridded Emissions (High Ozone Day, July 22, 2011)4	-21
Figure 4-6: MARAMA Alpha 2 VOC Anthropogenic SMOKE Gridded Emissions (Typical Summer Day, Ju	
	ne

Figure 4-7: MARAMA Alpha 2 VOC Anthropogenic SMOKE Gridded Emissions (High Ozone Day, July 22,
2011)
Figure 4-8: MARAMA Alpha 2 SO ₂ SMOKE Gridded Emissions (Typical Summer Day, June 24, 2011)4-21
Figure 4-9: MARAMA Alpha 2 SO ₂ SMOKE Gridded Emissions (High Ozone Day, July 22, 2011)4-21
Figure 5-1: EPA and OTC 12 km modeling domains5-27
Figure 5-2: Difference in ozone contribution between Alpha/Beta (GEOS-Chem) and Gamma (CAMx 3-D)
boundary conditions at 4 PM EST during June simulations5-28
Figure 6-1: Comparison of daily maximum 8-hour ozone concentrations at OTR sites6-33
Figure 6-2: Comparison of daily maximum 8-hour ozone concentrations at non-OTR sites6-33
Figure 6-3: Comparison of 1st highest maximum (left) and 4th highest maximum (right) 8-hour ozone
concentrations at OTR sites6-33
Figure 6-4: Comparison of 1st highest maximum (left) and 4th highest maximum (right) 8-hour ozone
concentrations at non-OTR sites6-33
Figure 6-5: Observed versus predicted 2011 ozone concentration (ppb; mean ± 1 standard deviation)
using Alpha 2 Inventory in the OTR where daily max was greater than 40 ppb6-34
Figure 6-6: Observed versus predicted 2011 ozone concentration (ppb; mean ± 1 standard deviation)
using Beta Inventory in the OTR where daily max was greater than 40 ppb
Figure 6-7: MFE in daily max 8-hr ozone Alpha 2, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10
days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)6-35
Figure 6-8: MFE in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10
days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)6-35
Figure 6-9: MFB in daily max 8-hr ozone Alpha 2, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10
days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)6-35
Figure 6-10: MFB in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10
days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)6-35
Figure 6-11: MAGE in daily max 8-hr ozone Alpha 2, 60 ppb threshold, Apr 15-Oct 30; only monitors with
10 days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)6-36
Figure 6-12: MAGE in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10
days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)6-36
Figure 6-13: MFE in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10
days greater than 60 ppb threshold6-36
Figure 6-14: MFE in daily max 8-hr ozone Gamma, 60 ppb threshold, Apr 15-Oct 30; only monitors with
10 days greater than 60 ppb threshold6-36
Figure 6-15: MFB in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10
days greater than 60 ppb threshold6-37
Figure 6-16: MFB in daily max 8-hr ozone Gamma, 60 ppb threshold, Apr 15-Oct 30; only monitors with
10 days greater than 60 ppb threshold6-37
Figure 6-17: MAGE in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10
days greater than 60 ppb threshold6-37
Figure 6-18: MAGE in daily max 8-hr ozone Gamma, 60 ppb threshold, Apr 15-Oct 30; only monitors with
10 days greater than 60 ppb threshold6-37
Figure 6-19: MFB comparison between Gamma (y-axis) and Beta (x-axis)6-38
Figure 6-20: MFE: comparison between Gamma (y-axis) and Beta (x-axis)6-38
Figure 6-21: Difference in Ozone Seasonal 8-Hour Maximum (Gamma – Beta)6-38
Figure 6-22: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed at
Susan Wagner, NY (360850067)6-39
Figure 6-23: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed at
Babylon, NY (361030002)6-39

Figure 6-24: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed	at
Greenwich, CT (090010017)	6-39
Figure 6-25: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed	at
Westport, CT (090190003)	6-39
Figure 6-26: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed	at
Edgewood, MD (240251001)	6-39
Figure 6-27: Observed ozone concentration (ppb) layer average and standard deviation compared to)
CMAQ layers up to 10 km	6-40
Figure 6-28: Observed ozone concentration (ppb) layer average and standard deviation compared to)
CMAQ layers up to 2 km	6-40
Figure 6-29: Comparison of daily observed and predicted PM _{2.5} FRM mass, annual and by season wit	h
1:1 (dashed), 1:1.5 (green) and 1:2 (red) lines for Winter (D/J/F), Spring (M/A/M), Summer (J/J/	A),
Fall (S/O/N), and Annually.	6-41
Figure 6-30: Observed and predicted PM _{2.5} FRM mass, all days	6-42
Figure 6-31: Observed and predicted PM _{2.5} FRM mass, 1-in-3 day schedule	6-42
Figure 6-32: MFE PM _{2.5} FRM mass, all days	6-42
Figure 6-33: MFE PM _{2.5} FRM mass, 1-in-3 day schedule	6-43
Figure 6-34: MFB PM _{2.5} FRM mass, all days	6-43
Figure 6-35: MFB PM _{2.5} FRM mass, 1-in-3 day schedule	6-43
Figure 6-36: MAGE PM _{2.5} FRM mass, all days	6-43
Figure 6-37: MAGE PM _{2.5} FRM mass, 1-in-3 day schedule	6-44
Figure 6-38: Observed annual average $PM_{2.5}$ FRM mass, 2011 (only monitors with \geq 10 days of data a	re
shown)	6-44
Figure 6-39: Predicted annual average $PM_{2.5}$ FRM mass, 2011 (only monitors with \geq 10 days of data a	re
shown)	6-45
Figure 6-40: MFE in PM _{2.5} FRM mass, 2011 (only monitors with \geq 10 days of data are shown)	6-45
Figure 6-41: MFB in PM2.5 FRM mass, 2011 (only monitors with ≥10 days of data are shown)	6-46
Figure 6-42: MAGE in PM _{2.5} FRM mass, 2011 (only monitors with ≥10 days of data are shown)	6-46
Figure 6-43: SO ₄ concentration (observed, CSN and IMPROVE, vs. predicted)	6-48
Figure 6-44: NO ₃ concentration (observed, CSN and IMPROVE, vs. predicted)	6-48
Figure 6-45: NH₄ concentration (observed, CSN only, vs. predicted)	6-49
Figure 6-46: EC (TOR) concentration (observed, CSN and IMPROVE, vs. predicted)	6-49
Figure 6-47: OC (TOR) concentration (observed, CSN and IMPROVE, vs. predicted)	6-49
Figure 6-48: Soil concentration (observed, CSN and IMPROVE, vs. predicted)	6-50
Figure 6-49: EC (TOR & TOT) concentration (observed, CSN only, vs. predicted)	6-50
Figure 6-50: OC (TOR & TOT) concentration (observed, CSN only, vs. predicted)	6-50
Figure 6-51: Total Carbon (TOR & TOT) concentration (observed, CSN only, vs. predicted)	6-51
Figure 6-52: MFB SO₄, 2011 (only monitors with ≥10 days of data are shown)	6-52
Figure 6-53: MFE SO₄, 2011 (only monitors with ≥10 days of data are shown)	6-52
Figure 6-54: MFB NO ₃ , 2011 (only monitors with ≥10 days of data are shown)	6-52
Figure 6-55: MFE NO₃, 2011 (only monitors with ≥10 days of data are shown)	6-52
Figure 6-56: MFB NH₄, 2011 (only monitors with ≥10 days of data are shown)	6-52
Figure 6-57: MFE NH₄, 2011 (only monitors with ≥10 days of data are shown)	6-52
Figure 6-58: MFB EC, 2011 (only monitors with ≥10 days of data are shown)	6-53
Figure 6-59: MFE EC, 2011 (only monitors with ≥10 days of data are shown)	6-53
Figure 6-60: MFB OC, 2011 (only monitors with ≥10 days of data are shown)	6-53
Figure 6-61: MFE OC, 2011 (only monitors with ≥10 days of data are shown)	6-53
Figure 6-62: MFB Soil, 2011 (only monitors with ≥10 days of data are shown)	6-53

Figure 6.62: MEE Soil 2011 (only monitors with >10 days of data are shown) 6.52
Figure 6-64: Comparison of observed vs. predicted extinction due to NH ₄ SO ₄ daily (top) and averaged
monthly (bottom) in MANE-VU6-55
Figure 6-65: Comparison of observed vs. predicted extinction due to NH ₄ NO ₃ daily (top) and averaged
Figure 6 66: Comparison of observed vs. predicted extinction due to LAC daily (top) and averaged
Figure 6-66. Comparison of observed vs. predicted extinction due to LAC daily (top) and averaged
montniy (bottom) in MANE-VU
Figure 6-67: Comparison of observed vs. predicted extinction due to POM daily (top) and averaged
monthly (bottom) in MANE-VU6-55
Figure 6-68: Comparison of observed vs. predicted extinction due to Soil daily (top) and averaged
monthly (bottom) in MANE-VU6-56
Figure 6-69: Comparison of observed vs. predicted extinction due to Sea Salt daily (top) and averaged
monthly (bottom) in MANE-VU6-56
Figure 6-70: Comparison of observed vs. predicted extinction due to CM daily (top) and averaged
monthly (bottom) in MANE-VU
Figure 6-71: Comparison of observed vs. predicted extinction due to total aerosols daily (ton) and
averaged monthly (bottom) in MANE-VU
Eigure 6.72: 2011 PCEM by concern (observed values darker shading, predicted values lighter shading) 6
Figure 0-72. 2011 NCFW by season (observed values darker shading, predicted values lighter shading)0-
57
Figure 6-73: Observed vs. predicted RFCIVI, light extinction (IVIM), and visibility impairment (deciviews)
at domain IMPROVE monitors
Figure 6-74: Daily Max 8-hour Ozone CMAQ v5.02 CB05 MARAMA Beta 2 Emissions (June 8, 2011)6-59
Figure 6-75: Daily Max 8-hour Ozone CAMx b6.40 CB05 MARAMA Beta 2 Emissions (June 8, 2011) 6-59
Figure 6-76: Daily Max 8-hour Ozone CMAQ v5.02 CB05 MARAMA Beta 2 Emissions (July 11, 2011)6-59
Figure 6-77: Daily Max 8-hour Ozone CAMx v6.40 CB05 MARAMA Beta 2 Emissions (July 11, 2011)6-59
Figure 6-78: NMB for CMAQ v5.02 CB05 (x-axis) vs CAMx v6.40 CB05 & CB6r2 (y-axis)6-60
Figure 6-79: NME for CMAQ v5.02 CB05 (x-axis) vs CAMx v6.40 CB05 & CB6r2 (y-axis)6-60
Figure 6-80: : R for CMAQ v5.02 CB05 (x-axis) vs CAMx v6.40 CB05 & CB6r2 (y-axis)6-60
Figure 6-81: Hourly observed vs. CMAQ CB05 modeled 8-hour ozone on ten days used in calculation of
RRF at Greenwich Point (090010017)6-61
Figure 6-82: Hourly observed vs. CAMx CB05 modeled 8-hour ozone on ten days used in calculation of
RRE at Greenwich Point (090010017) 6-61
Figure 6-83: Hourly observed vs. CMAD CB05 modeled 8-hour azone on ten days used in calculation of
REF at Sherwood Island (090019003)
Figure 6-84: Hourly observed vs. CAMy CB05 modeled 8-hour ozone on ten days used in calculation of
PRE at Sharwood Island (000010002)
Figure C. SE. Heurity charged vs. CMAO CDOF modeled 8 heurices an ten device used in calculation of
Figure 6-85: Hourry observed vs. CIVIAQ CB05 modeled 8-hour ozone on ten days used in calculation of
KRF at Edgewood (240251001)
Figure 6-86: Hourly observed vs. CAMx CB05 modeled 8-hour ozone on ten days used in calculation of
RRF at Edgewood (240251001)6-62
Figure 6-87: Hourly observed vs. CMAQ CB05 modeled 8-hour ozone on ten days used in calculation of
RRF at Babylon (360810124)6-62
Figure 6-88: Hourly observed vs. CAMx CB05 modeled 8-hour ozone on ten days used in calculation of
RRF at Babylon (360810124)6-62
Figure 6-89: Hourly observed vs. CMAQ CB05 modeled 8-hour ozone on ten days used in calculation of
RRF at Queens College (361030002)6-62
Figure 6-90: Hourly observed vs. CAMx CB05 modeled 8-hour ozone on ten days used in calculation of
RRF at Queens College (361030002)6-62

Figure 6-91: MFE in daily max 8-hr ozone Gamma, 60 ppb threshold, May 25-August 30; only monitors	
with 10 days greater than 60 ppb threshold (CAMx Gamma Run)	63
Figure 6-92: MFE in daily max 8-hr ozone Gamma, 60 ppb threshold; only monitors with 10 days greate	٢
than 60 ppb threshold (CMAQ Gamma Run)6-0	63
Figure 6-93: MFB in daily max 8-hr ozone Gamma, 60 ppb threshold, May 25-August 30; only monitors	
with 10 days greater than 60 ppb threshold6-0	63
Figure 6-94: MFB in daily max 8-hr ozone Gamma, 60 ppb threshold; only monitors with 10 days greate	٩r
than 60 ppb threshold (CMAQ Gamma Run)6-0	63
Figure 6-95: MAGE in daily max 8-hr ozone Gamma, 60 ppb threshold, May 25-August 30; only monitor	ſS
with 10 days greater than 60 ppb threshold6-0	63
Figure 6-96: MAGE in daily max 8-hr ozone Gamma, 60 ppb threshold; only monitors with 10 days	
greater than 60 ppb threshold (CMAQ Gamma Run)6-0	63
Figure 7-1: OTC 12km modeling domain and 4km nested grid7-0	65
Figure 7-2: Ozone NMB, July 2011 4 km grid7-0	66
Figure 7-3: Ozone NMB, July 2011 12 km grid	66
Figure 7-4: Ozone NME, July 2011 4 km grid7-6	66
Figure 7-5: Ozone NME, July 2011 12 km grid7-0	66
Figure 7-6: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #09001001	7
(thick line: monthly avg., thin line: max day)7-0	67
Figure 7-7: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #09001300	7
(thick line: monthly avg., thin line: max day)7-	67
Figure 7-8: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #09001900	3
(thick line: monthly avg., thin line: max day)7-	67
Figure 7-9: Observed and modeled (4km/12km grids) ozone (ppb for June 2011 at monitor #240251001	L
(thick line: monthly avg., thin line: max day)7-	67
Figure 7-10: Observed and modeled (4km/12km grids) ozone (ppb for June 2011 at monitor #34015002	<u>)</u>
(thick line: monthly avg., thin line: max day)7-	68
Figure 7-11: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor	
#360050133 (thick line: monthly avg., thin line: max day)7-	68
Figure 7-12: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor	
#360810124 (thick line: monthly avg., thin line: max day)7-0	68
Figure 7-13: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor	
#360850067 (thick line: monthly avg., thin line: max day)7-	68
Figure 7-14: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor	
#361030002 (thick line: monthly avg., thin line: max day)7-0	68
Figure 7-15: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor	
#361192004 (thick line: monthly avg., thin line: max day)7-0	68
Figure 7-16: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #09001001	17
(thick line: monthly avg., thin line: max day)7-(69
Figure 7-17: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #09001300)7
(thick line: monthly avg., thin line: max day)7-(69
Figure 7-18: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #09001900)3
(thick line: monthly avg., thin line: max day)7-	69
Figure 7-19: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #24025100)1
(thick line: monthly avg., thin line: max day)7-(69
Figure 7-20: Observed and modeled (4km/12km grids) ozone (ppb for July 2011 at monitor #34015002	. .
(thick line: monthly avg., thin line: max day)7-(69

Figure 7-21: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #360050133
(thick line: monthly avg., thin line: max day)7-69
Figure 7-22: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #360810124
(thick line: monthly avg., thin line: max day)7-70
Figure 7-23: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #360850067
(thick line: monthly avg., thin line: max day)7-70
Figure 7-24: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #361030002
(thick line: monthly avg., thin line: max day)7-70
Figure 7-25: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #361192004
(thick line: monthly avg., thin line: max day)7-70
Figure 7-26: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#090010017 (thick line: monthly avg., thin line: max day)7-71
Figure 7-27: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#090013007 (thick line: monthly avg., thin line: max day)7-71
Figure 7-28: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#090019003 (thick line: monthly avg., thin line: max day)7-71
Figure 7-29: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#240251001 (thick line: monthly avg., thin line: max day)7-71
Figure 7-30: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#34015002 (thick line: monthly avg., thin line: max day)7-71
Figure 7-31: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#360050133 (thick line: monthly avg., thin line: max day)7-71
Figure 7-32: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#360810124 (thick line: monthly avg., thin line: max day)7-72
Figure 7-33: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#360850067 (thick line: monthly avg., thin line: max day)7-72
Figure 7-34: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#361030002 (thick line: monthly avg., thin line: max day)7-72
Figure 7-35: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor
#361192004 (thick line: monthly avg., thin line: max day)7-72
Figure 8-1: MARAMA 2018 Projected Alpha 2 NO _x SMOKE Gridded Emissions (June 24)8-76
Figure 8-2: MARAMA 2018 Projected Alpha 2 NO _x SMOKE Gridded Emissions (July 22)8-76
Figure 8-3: MARAMA 2018 Projected Alpha 2 SO ₂ SMOKE Gridded Emissions (June 24)8-76
Figure 8-4: MARAMA 2018 Projected Alpha 2 SO ₂ SMOKE Gridded Emissions (July 22)8-76
Figure 10-1: Modeled Ozone on July 7, 2011 near Edgewood, MD (Monitor #240251001)10-104
Figure 10-2: Modeled Ozone on July 2, 2011 near monitors in Southern Connecticut
Figure 10-3: Modeled vs. Observed 8-hour maximum Ozone at Edgewood, MD calculated using nearest
grid cell (Monitor #240251001)10-105
Figure 10-4: Modeled vs. Observed 8-hour maximum Ozone at Edgewood, MD calculated using nearest
maximum from 3x3 grid (Monitor #240251001)10-105
Figure 10-5: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090010017 using all
grid cells for 10 selected days ordered by 2011 8-hr max10-106
Figure 10-6: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090010017 using less
water grid cells for 10 selected days ordered by 2011 8-hr max10-106
Figure 10-7: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090013007 using all
grid cells for 10 selected days ordered by 2011 8-hr max10-106
Figure 10-8: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090013007 using less
water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-9: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090019003 using all
grid cells for 10 selected days ordered by 2011 8-hr max10-106
Figure 10-10: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090019003 using less
water grid cells for 10 selected days ordered by 2011 8-hr max
Figure 10-11: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #240251001 using all
grid cells for 10 selected days ordered by 2011 8-hr max10-106
Figure 10-12: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #240251001 using less
water grid cells for 10 selected days ordered by 2011 8-hr max
Figure 10-13: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #340150002 using all
grid cells for 10 selected days ordered by 2011 8-hr max10-107
Figure 10-14: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #340150002 using less
water grid cells for 10 selected days ordered by 2011 8-hr max
Figure 10-15: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360050133 using all
grid cells for 10 selected days ordered by 2011 8-hr max
Figure 10-16: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360050133 using less
water grid cells for 10 selected days ordered by 2011 8-hr max
Figure 10-17: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360810124 using all
grid cells for 10 selected days ordered by 2011 8-hr max
Figure 10-18: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360810124 using less
water grid cells for 10 selected days ordered by 2011 8-hr max
Figure 10-19: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360850067 using all
grid cells for 10 selected days ordered by 2011 8-hr max10-107
Figure 10-20: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360850067 using less
water grid cells for 10 selected days ordered by 2011 8-hr max10-107
Figure 10-21: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #361030002 using all
grid cells for 10 selected days ordered by 2011 8-hr max10-108
Figure 10-22: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #361030002 using less
water grid cells for 10 selected days ordered by 2011 8-hr max10-108
Figure 10-23: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #361192004 using all
grid cells for 10 selected days ordered by 2011 8-hr max10-108
Figure 10-24: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #361192004 using less
water grid cells for 10 selected days ordered by 2011 8-hr max
Figure 11-1: 2018 Projected Alpha 2 Base Case Design Values (EPA Guidance)11-110
Figure 11-2: 2017 Projected Beta 2 Base Case Design Values (EPA Guidance)11-110
Figure 11-3: 2017 Projected Beta 2 Base Case Design Values (Less Water)11-111
Figure 11-4: Projected Gamma 2020 Base Case Design Values for 2011 (left) and 2020 (right) (EPA
Guidance)11-111
Figure 11-5: Projected Gamma 2020 Base Case Design Values for 2011 (left) and 2020 (right) (Less
Water)11-112
Figure 12-1: Relative Response Factor (RRF) of PM Species at each MANE-VU Class I area on 20% best
and worst days12-126
Figure 12-2: Projected change in visibility (deciviews) from 2011 to 2028 at MANE-VU Class I areas12- 127
Figure 12-3: Visibility conditions (deciviews), measured (2000-2004, 2011), modeled (2028), and
interpolated (2064), at MANE-VU Class I areas12-128
Figure 12-4: Relative Response Factor (RRF) of PM Species at each MANE-VU Class I area and nearby
sites on 20% clearest and most impaired days for base and control case modeling

Figure 12-5: Projected change in visibility (deciviews) from 2011 to 2028 at MANE-VU Class I area and
nearby sites on 20% clearest and most impaired days for base and control case modeling12-131
Figure 12-6: Modeled 2011 base case, 2028 base case, and 2028 control case compared to no
degradation on best days, URP on most impaired days, and 5-year rolling haze indices12-132
Figure 13-1: Projected Gamma 2023 Base Case Design Values for 2011 (left) and 2023 (right) (EPA
Guidance)13-135
Figure 13-2: Projected Gamma 2023 Base Case Design Values for 2011 (left) and 2023 (right) (Less
Water)13-136
Figure 13-3: Anthropogenic US intra-domain contribution by sector on dates projected to exceed the 70
ppb NAAQS in 2023 to Sherwood Island Connector, CT (90019003) ordered by total DVF13-139
Figure 13-4: Anthropogenic US intra-domain contribution by sector on dates projected to exceed the 70
ppb NAAQS in 2023 to Edgewood, MD (240251001) ordered by total DVF13-140
Figure 13-5: Anthropogenic US intra-domain contribution by sector on dates projected to exceed the 70
ppb NAAQS in 2023 to Susan Wagner, NY (360850067) ordered by total DVF13-140
Figure 13-6: Anthropogenic US intra-domain contribution by sector on dates projected to exceed the 70
ppb NAAQS in 2023 to Babylon, NY (361030002) ordered by total DVF13-141
Figure 13-7: Maximum, average, and minimum contribution by sector on exceedance days at Sherwood
Island Connector, CT (90019003)13-142
Figure 13-8: Maximum, average, and minimum contribution by sector on exceedance days at Edgewood,
MD (240251001)
Figure 13-9: Maximum, average, and minimum contribution by sector on exceedance days at Susan
Wagner, NY (360850067)13-143
Figure 13-10: Maximum, average, and minimum contribution by sector on exceedance days at Babylon,
NY (361030002)
Figure 13-11: Total days state is projected to contribute at least 0.7 ppb to exceedance in 2023 at
Sherwood Island Connector (90019003) and sector that contributes the most during the
exceedance date from the state13-145
Figure 13-12: Total days state is projected to contribute at least 0.7 ppb to exceedance in 2023 at
Edgewood, MD (240251001) and sector that contributes the most during the exceedance date from
the state
Figure 13-13: Total days state is projected to contribute at least 0.7 ppb to exceedance in 2023 at Susan
Wagner, NY (360850067) and sector that contributes the most during the exceedance date from
the state
Figure 13-14: Total days state is projected to contribute at least 0.7 ppb to exceedance in 2023 at
Babylon, NY (361030002) and sector that contributes the most during the exceedance date from
the state
Figure 13-15: Maximum, average, and minimum contribution by state on exceedance days at Sherwood
Island, CT (90019003)
Figure 13-16: Maximum, average, and minimum contribution by state on exceedance days at Edgewood,
MD (240251001)
Figure 13-17: Maximum, average, and minimum contribution by state on exceedance days at Susan
Wagner, NY (360850067)
Figure 13-18: Maximum, average, and minimum contribution by state on exceedance days at Babylon,
NY (361030002)
Figure 13-19: Ozone concentration grouped by day of the week in Julian days at Sherwood Island
Connector, CT (90019003)
Figure 13-20: Ozone concentration grouped by day of the week in Julian days at Edgewood, MD
(240251001)

Figure 13-21: Ozone concentration grouped by day of the week in Julian days at Susan Wagner, NY
(360850067)13-151
Figure 13-22: Ozone concentration grouped by day of the week in Julian days at Babylon, NY
(361030002)13-151
Figure 14-1: Monitored Ozone Data for Episode A (May 25-June 12, 2011)14-156
Figure 14-2: Number of Days with Ozone > 75ppb for Episode A (May 25-June 12, 2011)14-156
Figure 14-3: Monitored Ozone Data for Episode B (June 27-August 2, 2011)14-157
Figure 14-4: Number of Days with Ozone > 75ppb for Episode B (June 27-August 2, 2011)14-157
Figure 14-5: Monitored Ozone Data for Episode C (June 15-June 28, 2007)14-157
Figure 14-6: Number of Days with Ozone > 75ppb for Episode C (June 15-June 28, 2007)14-157
Figure 14-7: Monitored Ozone Data for Episode D (July 30-August 4, 2007)14-158
Figure 14-8: Number of Days with Ozone > 75ppb for Episode D (July 30-August 4, 2007)14-158
Figure 14-9: Wind trajectories of ozone (ppb) for Westport, CT monitor during Episode A (May 25-June
12, 2011)
Figure 14-10: Wind trajectories of ozone (ppb) for Edgewood, MD monitor during Episode A (May 25-
June 12, 2011)14-159
Figure 14-11: Wind trajectories of ozone (ppb) for Westport, CT monitor during Episode B (June 27-
August 2, 2011)14-160
Figure 14-12: Wind trajectories of ozone (ppb) for Edgewood monitor during Episode B (June 27-August
2, 2011)
Figure 14-13: Wind trajectories of ozone (ppb) for Westport, CT monitor during Episode C (June 15-June
28, 2007)14-160
Figure 14-14: Wind trajectories of ozone (ppb) for Edgewood, MD monitor during Episode C (June 15-
June 28, 2007)14-160
Figure 14-15: Wind trajectories of ozone (ppb) for Westport, CT monitor during Episode D (July 30-
August 4, 2007)14-160
Figure 14-16: Wind trajectories of ozone (ppb) for Edgewood monitor during Episode D (July 30-August
4, 2007)14-160
Figure 14-17: 4th high 8-hour ozone from July only 2011 runs14-162
Figure 14-18: 4th high 8-hour ozone from full ozone season 2011 runs14-162
Figure 14-19: 4th high 8-hour ozone from July only 2018 runs14-162
Figure 14-20: 4th high 8-hour ozone from full ozone season 2018 runs14-162
Figure 14-21: Comparison of differences (2018 minus 2011) of 4th high 8-hour ozone from July only and
full ozone season14-163
Figure 14-22: Comparison of differences (2018 minus 2011) of 4th high 8-hour ozone from July only and
full ozone season (only differences greater than 0.5 ppb)14-163

List of Tables

Table 1-1: Nonattainment areas and classifications in the OTR for 2008 and 2015 Ozone NAAQS	1-3
Table 1-2: List of Class I Areas in MANE-VU (40 CFR 81)	1-4
Table 1-3: List of states in geographic areas based on RPOs	1-5
Table 1-4: Multi-pollutant modeling schedule using 2011 platform	1-6
Table 2-1: Parameters used by WRF v. 3.4	2-1
Table 2-2: Layers used in WRF v 3.4	2-2
Table 3-1: Modeled 2018 DVFs for 12 high ozone monitors in the OTR comparing BEIS v. 3.6 and B	EIS v.
3.6.1	3-12
Table 4-1: Inventories used at each stage of OTC 2011 base year modeling	4-15
Table 4-2: Change in NO _x emissions (tons) on selected episode days in July 2011 as the result of Sr	nall
EGU temporalization	4-19
Table 4-3: 2011 base case Alpha 2 emissions (tons) by pollutant and RPO for aggregated sectors fr	om
SMOKE processed emission reports	4-22
Table 4-4: 2011 base case Beta emissions (tons) by pollutant and RPO for aggregated sectors from	1
SMOKE processed emission reports	4-23
Table 4-5: 2011 base case Gamma emissions (tons) by pollutant and RPO for aggregated sectors fr	om
SMOKE processed emission reports	4-24
Table 5-1: Layers used by the photochemical model and meteorological model (WRF)	5-28
Table 5-2: Module options used in compiling the CCTM executable	5-29
Table 5-3: Module options used in compiling the CCTM executable for Gamma Modeling	5-29
Table 5-4: Runtime options used in the MPI script	5-30
Table 6-1: Correlation coefficients for 1st and 4th highest maximum 8-hour ozone concentrations	in
2011 base case modeling	6-33
Table 6-2: Summary statistics for MFE, MFB, and MAGE from the Beta and Gamma modeling platf	orms6-
38	
Table 6-3: Summary statistics for predicted PM _{2.5} FRM mass	6-41
Table 6-4: Seasonal summary statistics (MFB, MFE, MAGE) for light extinction due to aerosol speci	ies for
IMPROVE monitors in modeling domain	6-57
Table 6-5: Run specifications for CMAQ vs CAMx benchmarking runs	6-58
Table 6-6: CMAQ vs CAMx model performance statistics for key monitors in the OTR using CB05	
chemistry	6-61
Table 8-1: Inventories used at each stage of OTC 2011 base year modeling	8-74
Table 8-2: 2018 base case Alpha 2 emissions (tons) by pollutant and RPO for aggregated sectors fr	om
SMOKE processed emission reports	8-77
Table 8-3: 2028 base case Alpha 2 emissions (tons) by pollutant and RPO for aggregated sectors fr	om
SMOKE processed emission reports	8-78
Table 8-4: 2017 base case Beta 2 emissions (tons) by pollutant and RPO for aggregated sectors fro	m
SMOKE processed emission reports	8-79
Table 8-5: 2020 base case Gamma emissions (tons) by pollutant and RPO for aggregated sectors fr	·om
SMOKE processed emission reports (states fully in the modeling domain only)	8-80
Table 8-6: 2023 base case Gamma emissions (tons) by pollutant and RPO for aggregated sectors fr	rom
SMOKE processed emission reports (states fully in the modeling domain only)	8-80
Table 8-7: 2028 base case Gamma emissions (tons) by pollutant and RPO for aggregated sectors fr	rom
SMOKE processed emission reports (states fully in the modeling domain only)	8-81
Table 9-1: Units that are considered retired in ERTAC that were included in Ask 2	9-84
Table 9-2: SO ₂ and NO _X Model Unit Emission Rates (lb. /hour) for coal and oil-fired EGUs	9-84

Table 9-3: Projected model emission rate, 2028 base and control case emission rates applied	to EGUs
subject to Ask 2	9-85
Table 9-4: 2028 Base Case Projections and Control Efficiencies (CEFF) for non-EGU sources su 2	bject to Ask 9-86
Table 9-5: State supplied adjustments to oil units modeled to meet the low sulfur fuel oil ask ERTAC	using 9-87
Table 9-6: Oil Units in ERTAC lacking Base Year and Future Year (FY) SO ₂ emissions, but with f heat input	uture year 9-88
Table 9-7: Control Efficiencies for each pollutant and SCC in default control packet	9-89
Table 9-8: SCCs considered to be potential HEDD units in ERTAC	9-91
Table 9-9: Units not considered to be HEDD units due to average operating hours, size, or onl 92	ine date9-
Table 9-10: Units excluded as HEDD units due to state feedback	9-94
Table 9-11: Units reintroduced as HEDD units due to state feedback	9-94
Table 9-12: HEDD units required to meet 0.19 lb. /MMBtu in CT	9-95
Table 9-13: Unit level data employed in HEDD control packet development	9-96
Table 9-14: Annual NO_x and SO_2 results in tons from ERTAC projections for four of the MANE- 98	VU Asks9-
Table 9-15: Annual NO _x and SO ₂ results in tons from a EMF control strategy run for three of the VII Asks	he MANE- 9-99
Table 10-1: MAGE for monitors impacted and not impacted by use of the land-water masking	technique
Table 10-2: 2018 ozone projections for 10 key monitors with and without water grids cells	10-109
Table 11-1: State summary (max. DVF (ppb), monitors violating 75 ppb, monitors violating 70	ppb) of
base case CMAQ modeling for 2018 Alpha and Alpha 2, 2017 Beta, and 2020 and 2023 G	amma
platforms calculated using the "EPA Guidance" and "Less Water" techniques	11-112
Table 11-2: Monitor summary of base case CMAQ modeling for 2018 Alpha and Alpha 2, 201 2020 and 2023 Gamma platforms calculated using the "EPA Guidance" and "Less Water"	7 Beta, and ,
techniques (DVF > 75 ppb highlighted in red, DVF > 70 ppb highlighted in green)	11-113
Table 12-1: Model Input for MATS	12-124
Table 12-2: Model Input for SMAT-CE	12-124
Table 12-3: Class I areas in modeling domain	12-125
Table 12-4: RRFs of visibility-impairing constituent PM species 20% worst and best days at Cla	ass I areas
In OTC modeling domain for 2028 Alpha 2 base case modeling	
Table 12-5: 2000-2004 baseline, 2011 monitored, and 2028 modeled visibility impairment (de	civiews) on
20% worst and best days at class I areas in OTC modeling domain	
Table 12-6: RRFs of visibility-impairing constituent PM species 20% most impaired and 20% cl	earest days
at Class I areas in OTC modeling domain for 2028 Gamma base case modeling	
Table 12-7: RRFs of visibility-impairing constituent PM species 20% most impaired and cleare	st days at
Class Lareas in OTC modeling domain for 2028 Gamma control case modeling	
(deciviews) on 20% most impaired (MI) and clearest days at Class I areas in OTC modelin	ment g domain
	12-131
Table 13-1: SCC Pattern for Tagging Sub Sectors (with * indicating truncated SCC)	13-134
Table 13-2: Tagging Methodology	13-134
Table 13-3: State summary (maximum DVF, monitors violating 75 ppb, monitors violating 70 base case modeling for 2023 Gamma platforms calculated using the "EPA Guidance" and	ppb) of 1 "Less
Water" techniques.	

Table 13-4: Monitor summary for monitors in the OTR only of base case modeling for 2023 Gamma platforms calculated using the "EPA Guidance" and "Less Water" techniques (DVF > 75 ppb
highlighted in red, DVF > 70 ppb highlighted in green).
Figure 13-5: NO _x emissions (thousands of tons) included for each state and sector in the 2023 modeling
Table 13-6: States projected to contribute at least 0.7 ppb in 2023 to Sherwood Island Connector, CT
(90019003) and the three sectors that contribute the most from that state
Table 13-7: States projected to contribute at least 0.7 ppb in 2023 to Edgewood, MD (240251001) and
the three sectors that contribute the most from that state
Table 13-8: States projected to contribute at least 0.7 ppb in 2023 to Susan Wagner, NY (360850067)
and the three sectors that contribute the most from that state
Table 13-9: States projected to contribute at least 0.7 ppb in 2023 to Babylon, NY (361030002) and the
three sectors that contribute the most from that state13-144
Table 13-10: 1% contribution linkages in EPA 'en' and OTC Gamma 2023 CAMx contribution modeling*
Table 13-11: Monitors projected to be in nonattainment or to be in maintenance in 2023 in the Eastern
US13-152
Table 13-12: State level contribution (ppb) to monitors projected to be in nonattainment in 2023.13-153
Table 13-13: State level contribution (ppb) to monitors projected to be in maintenance in 202313-154
Table 14-1: Descriptions of episodes14-155
Table 14-2: Exceedances of 75ppb by state during episodes in the OTR14-158
Table 14-3: Model versions used in OTC episodic modeling analyses14-161
Table 14-4: Evaluation of Monitors in the OTR14-162
Table 14-5: Monitor comparison of 4th high 8-hour ozone from July only and full ozone season 2018
runs14-164

List of Acronyms

Organizations

CenSARA: Central States Air Resource Agencies	1-134, 175, 176, 177
CMAS: Community Modeling and Analysis System	5-28, 5-29, 8-77
EPA: Environmental Protection Agency 1-130, 1-131, 1-132, 1-133, 1-134, 1	1-135, 1-136, 1-137, 2-1, 2-2,
2-9, 2-10, 3-11, 5-26, 5-27, 5-29, 7-67, 8-75, 10-103, 10-105, 10-106, 10-12	11, 11-112, 12-126, 13-135,
13-153, 13-154, 14-158, 14-164, 14-167, 171, 172, 174, 175, 177, 178, 179	, 180, 181, 182, 183, 184
ERTAC: Eastern Regional Technical Advisory Committee	14-164, 175, 176, 177, 178
FLM: Federal Land Manager	1-133
FS: Forest Service	1-133
FWS: Fish and Wildlife Service	1-133
LADCO: Lake Michigan Air Directors Consortium	1-134, 8-75, 175, 176, 177
MANE-VU: Mid-Atlantic Northeast Visibility Union. 1-130, 1-133, 1-134, 1-13	37, 2-9, 5-26, 12-128, 12-129,
12-132	
MARAMA: Mid-Atlantic Regional Air Management Association 1-135, 8-75, 8	-78, 171, 172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183, 184	
NCEP: National Centers for Environmental Prediction	
NJDEP: New Jersey Department of Environmental Protection	1-135
NOAA: National Oceanic and Atmospheric Administration	2-3
NPS: National Park Service	1-133
NRDC: Natural Resources Defense Council	1-132
NWS: National Weather Service	2-3
NYSDEC: New York State Department of Environmental Conservation 2-3, 2-	7, 2-9, 3-11, 3-12, 7-67, 8-77,
10-103, 10-104, 10-107	
ORC: Ozone Research Center	1-135
OTC: Ozone Transport Commission .1-130, 1-134, 1-135, 1-137, 2-1, 2-3, 2-9,	, 3-11, 5-26, 7-66, 7-67, 7-74,
8-75, 10-103, 10-105, 10-111, 11-112, 13-135, 13-136, 13-153, 13-154, 14	-157, 14-164, 14-165, 14-167,
175, 176, 177, 178, 179	
OTR: Ozone Transport Region1-134, 1-136, 1-137, 2-1, 2-2, 3-11, 3-12, 5-2	6, 7-66, 7-67, 7-74, 8-75, 13-
135, 13-137, 14-161, 14-164, 14-165, 14-166, 14-169	
RPO: Regional Planning Organization	1-134, 1-137
SESARM: Southeastern States Air Resource Managers	1-134, 175, 176
UMD: University of Maryland	1-135
VADEQ: Virginia Department of Environmental Quality	1-135

Statutes

NAAQS: National Ambient Air Quality Standard. 1-131, 1-132, 1-137, 10-103, 11-112, 13-135, 13-137,	, 13-
140, 13-147, 13-153, 13-154, 13-155, 14-157, 14-158	
RPG: Reasonable Progress Goal1-	-133
SIP: State Implementation Plan 1-131, 1-132, 1-133, 1-134, 1-135, 1-137, 7-66, 13-135, 14-157, 14-	-164
WOE: Weight of Evidence	-157

Other Authorities

DVC: Design Value (Baseline Concentration)	. 10-103,	10-104,	10-105,	10-111,	11-112
DVF: Design Value (Estimated Future)	. 10-103,	10-105,	10-111,	13-141,	13-155

MAGE: Mean Adjusted Gross Error	3-11, 3-12, 7-66, 170
MAT: Modeled Attainment Test	
MFB: Mean Fractional Bias	
MFE: Mean Fractional Error	
NMB: Normalize Mean Bias	7-67
NME: Normalized Mean Error	7-67
RMSE: Root Mean Square Error	
RRF: Relative Reduction Factor	14-167

Rules

NO _x : Oxides of Nitrogen	
PBL: Planetary Boundary Layer	
PM: Particulate Matter	
PM _{2.5} : Fine Particulate Matter	
VOC: Volatile Organic Compound	1-136, 3-13, 8-77

Treatises

BEIS: Biogenic Emissions Inventory System	3-11, 3-12, 3-13, 5-28, 5-29, 14-164
CALIPSO: Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observ	vations 2-7, 2-8, 2-9
CAMx: Comprehensive Air Quality Model with eXtensions	14-164
CCTM: CMAQ Chemical-Transport Model	5-28, 5-29
CMAQ: Community Multi-scale Air Quality 3-11, 3-12, 5-26,	, 5-28, 5-29, 10-104, 14-157, 14-164
GEOS: Goddard Earth Observing System	5-26, 5-27
GHRSST: Group for High Resolution Sea Surface Temperature	7-67
MCIP: Meterorology-Chemistry Interface Processor	2-1
MOVES: MObile Vehicle Emission Simulator	14-161, 14-164, 181
NAM: North American Mesoscale Forecast System	7-67
NCLD: National Land Cover Database	
NEI: National Emissions Inventory	
NLCD: National Land Cover Database	7-67
RRF: Relative Reduction Factor10-1	.04, 10-105, 11-112, 12-127, 12-130
RTMA: Real-Time Mesoscale Analysis	2-3
SMAT-CE: Software for the Modeled Attainment Test - Community Ec	lition12-126
WRF: Weather Research and Forecasting2-1, 2-2, 2-3, 2-4, 2-	5, 2-8, 2-9, 2-10, 5-26, 7-67, 10-107

Preamble

This report is intended to document committee work completed by the Ozone Transport Commission (OTC) and the Mid-Atlantic Northeastern Visibility Union (MANE-VU) using a photochemical modeling platform based on the year 2011. The modeling exercises documented within demonstrate acceptable performance of the platform as required for State Implementation Plans (SIPs), specifically attainment demonstrations owed by New Jersey, New York and Connecticut for the 2008 Ozone National Ambient Air Quality Standard (NAAQS) and the 2028 Regional Haze SIPs. Documented exercises are committee products and are primarily base case runs, with the exception of the MANE-VU control case representing the MANE-VU "Ask." Unless otherwise indicated, modeling exercises rely on generally accepted conservative assumptions regarding emissions inventories and ozone photochemistry.

This document does not contain every modeling exercise completed by the OTC, MANE-VU, and member states using the OTC/MANE-VU 2011 based modeling platform. Some exploratory screening analyses, modeling performed outside of committee efforts, and work performed in Maryland using a "best science" platform are not included in this documentation. Member states performing additional SIP relevant modeling intend to document those efforts in their individual SIP supporting documentation.

This document will be updated as needed to support state SIP submittals in the future.

Section 1. Introduction

Purpose

The purpose of this report is to technically document the SIP quality modeling efforts undertaken by OTC and MANE-VU for use in regional ozone and haze planning and for inclusion in any member's SIP submittal for either demonstrating ozone attainment or for showing reasonable further progress for haze.

EPA's guidance on modeling for ozone, PM_{2.5}, and regional haze includes recommendations for documentation of the modeling platform that should be included in SIP submissions. EPA recommends that the following be included in the technical documentation:

- Overview of the air quality issue being considered including historical background
- List of the planned participants in the analysis and their expected roles
- Schedule for completion of key steps in the analysis and final documentation
- Description of the conceptual model for the area
- Description of periods to be modeled, how they comport with the conceptual model, and why they are sufficient
- Models to be used in the demonstration and why they are appropriate
- Description of model inputs and their expected sources (e.g., emissions, met, etc.)
- Description of the domain to be modeled (expanse and resolution)
- Process for evaluating base year model performance (meteorology, emissions, and air quality) and demonstrating that the model is an appropriate tool for the intended use
- Description of the future years to be modeled and how projection inputs will be prepared
- Description of the attainment test procedures and (if known) planned weight of evidence
- Expected diagnostic or supplemental analyses needed to develop weight of evidence analyses
- Commitment to specific deliverables fully documenting the completed analysis (US EPA 2014a).

Document Outline

The remainder of this section will review the items listed above that are not addressed in other sections of the document.

- Section 2 is an assessment of the meteorological model used in the platform in order to determine if many of the mechanisms for predicting ozone formation and regional haze are fundamentally sound.
- Section 3 assesses whether an upgrade to a more recent biogenic emissions model is warranted.
- Section 4 describes the methods used in processing emissions for use in the SIP quality modeling platform for the base year.
- Section 5 describes the setup of the photochemical model.
- Section 6 assesses the model performance for ozone, PM_{2.5}, and regional haze in the base year.
- Section 7 describes a methodology for improving performance using nested gridding and analyzed the results from implementing the methodology.
- Section 8 describes the methods used in processing emissions for use in the SIP quality modeling platform for the future years.
- Section 9 describes the development of the emissions inventory for the MANE-VU Regional Haze control case.

- Section 10 describes the method for calculating future projected ozone design values and instances where the default method may not be warranted.
- Section 11 describes the results from future year ozone modeling projections that relied on CMAQ.
- Section 12 describes the results from future year visibility modeling projections.
- Section 13 describes the results from future year ozone modeling projections that relied on CAMx and includes discussion of source apportionment.
- Section 14 describes the methodology for conducting screening analysis using only ozone episodes, and evidence for its reasonability.

History

Clean Air Act

The Clean Air Act was designed to control air pollution in the United States, is administered by the EPA, and its implementing regulations are codified at 40 C.F.R. Subchapter C, Parts 50-97.

The history of national air pollution legislation began with the 1955 Air Pollution Control Act, but the first piece of legislation to control air pollution was the Clean Air Act of 1963. The Air Quality Act of 1967 continued the processes of developing legislation to reduce air pollution, but it was in 1970 that the Clean Air Act in its modern form was adopted. Amendments were added in 1977 and 1990, which further expanded the control of emissions.

One of the programs to come out of the 1970 Clean Air Act Amendments was the creation of NAAQS, thresholds of air pollution considered to be the upper limit of healthy air that are based on the best scientific evidence available that must be met nationally (*Clean Air Act Amendments of 1970*). NAAQS were developed for several pollutants, including ground-level ozone.

The 1970 Clean Air Act also introduced the SIP, which is intended to demonstrate how an area that is not complying with the NAAQS will meet that standard through state programs that become federally enforceable following approval of the SIP. The 1990 amendments expanded the requirements for SIPs, in particular in regards to ground-level ozone (*Clean Air Act Amendments of 1990*).

The 1977 amendments saw the introduction of provisions to reduce visibility impairment at areas termed "Class I" areas, which are significant national parks and other natural areas (*Clean Air Act Amendments of 1977*). This program was further strengthened in 1990 setting requirements for regional haze SIPs, including the setting of RPGs.

The following is an overview of some of the more recent NAAQS that are applicable to this document, as well as an overview of the regional haze program.

1997 8-hour Ozone NAAQS

In 1997 the primary and secondary NAAQS were set to 0.08 ppm for the three year average of the 4th highest 8-hour average ozone concentration, which due to rounding conventions is equivalent to 84 ppb (US EPA 1997). This standard was revoked as of April 6, 2015 and will no longer be considered in this document (US EPA 2015a).

2008 8-hour Ozone NAAQS

In 2008 the primary and secondary NAAQS were set to 0.075 ppm for the three year average of the 4th highest 8-hour average ozone concentration, which is equivalent to 75 ppb (US EPA 2008). After some delays in timeframes outlined in the Clean Air Act, areas were designated for the 2008 NAAQS as seen in Figure 1-1 and Table 1-1 (US EPA 2012).

Following the designation of an area as nonattainment for a criteria pollutant, the Clean Air Act requires submission of a SIP to demonstrate how that area will meet the pollutant standard (NAAQS) in the time period established by the Act. Areas designated as marginal require no air quality modeling (US EPA 2015a). One nonattainment area, Baltimore, MD, was designated moderate, and was expected to require the submission of an attainment demonstration using photochemical modeling, with the attainment demonstration being based on 2018 design values (US EPA 2012). However, following the DC Circuit decision in NRDC vs. EPA on December 23, 2014, the attainment deadline was advanced from December 31, 2018 to July 20, 2018, so that the states now needed to demonstrate attainment using 2017 design values (DC Circuit 2014).

The New York City, NY-NJ-CT nonattainment area, which was originally designated marginal in 2012 was reclassified to moderate effective June 3, 2016 given its continued monitoring of nonattainment (US EPA 2016).

2015 8-hour Ozone NAAQS

In 2015 the primary and secondary NAAQS were set to 0.070 ppm for the three year average of the 4th highest 8-hour average ozone concentration, which is equivalent to 70 ppb (US EPA 2015b). Areas were designated for the 2015 NAAQS as seen in Figure 1-2 and Table 1-1 (US EPA 2018).

Area Name	State	tate No. 2008 NAAQS		2008 NAAQS		2015 NAAQS	
		Counties	2012 DVs (ppm)	Classification	2016 DVs (ppm)	Classification	
Baltimore, MD	MD	6	0.089	Moderate	0.073	Marginal	
Greater Connecticut, CT	СТ	5	0.079	Marginal	0.074	Marginal	
NYC-N. NJ-Long Island, NY-NJ-CT	СТ	3	0.084	Marginal	0.083	Moderate	
	NJ	12	0.084	Marginal	0.083	Moderate	
	NY	9	0.084	Marginal	0.083	Moderate	
Allentown-Bethlehem-Easton, PA	PA	3	0.076	Marginal	n/a		
Dukes County, MA	MA	1	0.076	Marginal	n/a		
Jamestown, NY	NY	1	0.077	Marginal	n/a		
Lancaster, PA	PA	1	0.077	Marginal	n/a		
PhilaWilmAtl. City, PA-NJ-MD-DE	NJ	9	0.083	Marginal	0.077	Marginal	
	DE	1	0.083	Marginal	0.077	Marginal	
	MD	1	0.083	Marginal	0.077	Marginal	
	PA	5	0.083	Marginal	0.077	Marginal	
Pittsburgh-Beaver Valley, PA	PA	7	0.080	Marginal	n/a		
Reading, PA	PA	1	0.077	Marginal	n/a		
Seaford, DE	DE	1	0.077	Marginal	n/a		
Washington, DC-MD-VA	DC	1	0.081	Marginal	0.072	Marginal	
	MD	5	0.081	Marginal	0.072	Marginal	
	VA	9	0.081	Marginal	0.072	Marginal	

Table 1-1: Nonattainment areas and classifications in the OTR for 2008 and 2015 Ozone NAAQS

Figure 1-1: 2008 Ozone NAAQS Designations in the OTR as originally designated in 2012

Figure 1-2: 2015 Ozone NAAQS Designations in the OTR as originally designated in 2016

Regional Haze

EPA's regional haze regulations require regional haze SIPs to be updated for the second planning period by July 31, 2018. This SIP requires modeling to demonstrate reasonable further progress towards background visibility conditions at Class I areas and to set 2028 RPGs using estimates of visibility following controls anticipated as the result of the consultation process between the states and FLMs. The controls will be included in each state's long-term strategy and deemed to be reasonable following a four-factor analysis. Effective January 10, 2017, the deadline for haze SIP submittals was extended to July 31, 2021 (US EPA 2017), however MANE-VU states have agreed to meet the 2018 deadline in order to take advantage of the current 2011 modeling platform (which is the subject of this TSD). A list of the Class I areas in MANE-VU is in Table 1-2.

State	Area Name	Acreage	FLM	Monitored?
ME	Acadia National Park	37,503	NPS	Yes
	Moosehorn Wilderness Area	7,501	FWS	Yes
NH	Great Gulf Wilderness Area	5,552	FS	Yes
	Presidential Range-Dry River Wilderness Area	20,000	FS	No
NJ	Brigantine Wilderness Area	6,603	FWS	Yes
VT	Lye Brook Wilderness	12,430	FS	Yes
ME & NB, CA	Roosevelt Campobello International Park	2,721	Chairman, RCIP Commission	No

Table 1-2: List of Class I Areas in MANE-VU (40 CFR 81)

Geographic Definitions

Throughout this document, several geographic definitions will be used that are based on the boundaries of Regional Planning Organizations (RPOs). Table 1-3 shows the RPOs and their member states, though in some cases figures are limited to what is within the OTC modeling domain.

отс	MANE-VU	SESARM	LADCO	CenSARA
Connecticut	Connecticut	Alabama	Illinois	Arkansas
District of Columbia	District of Columbia	Florida	Indiana	lowa
Delaware	Delaware	Georgia	Michigan	Kansas
Massachusetts	Massachusetts	Kentucky	Minnesota	Louisiana
Maryland	Maryland	Mississippi	Ohio	Missouri
Maine	Maine	North Carolina	Wisconsin	Nebraska
New Hampshire	New Hampshire	South Carolina		Oklahoma
New Jersey	New Jersey	Tennessee		Texas
New York	New York	Virginia		
Pennsylvania	Pennsylvania	West Virginia		
Rhode Island	Rhode Island			
Virginia	Vermont			
Vermont				

Table 1-3: List of states in geographic areas based on RPOs

Participants

OTC Air Directors

OTC Air Directors serve as overseers of the work products developed by the OTC Modeling Committee. The OTC Air Directors oversee the design of ozone control strategies for the OTR and make decisions surrounding modeling of the air quality impacts of policies. The Air Directors review all OTC SIP quality modeling platform documentation before it is finalized. The state members of the OTC Modeling Committee keep Air Directors informed of the development of the OTC SIP quality modeling platform.

OTC Modeling Committee

The OTC Modeling Committee members serve as first tier reviewers of the work products developed for the SIP quality modeling platform. The OTC Modeling Committee approves technical approaches used in the modeling platform, reviews results, and approves products for review by the Air Directors. Since members of the three EPA regions are members of the OTC Modeling Committee, they provide insights into any issues that may occur involving the acceptability of the OTC SIP quality modeling platform in a SIP so that problems can be corrected at the regional level.

OTC Modeling Planning Group

The OTC Modeling Planning Group is made up of members of the modeling centers and the OTC Modeling Committee leadership. The workgroup reviews technical decisions to bring recommendations on approaches to the OTC Modeling Committee.

OTC Technical Support Document Workgroup

The OTC TSD Workgroup is responsible for compiling drafts of the technical documentation for review by the OTC Modeling Planning Group.

OTC Modeling Centers

The OTC Modeling Centers are the state staff and academics that perform modeling and conduct analyses of modeling results. They include NYSDEC, NJDEP, VADEQ, UMD via MDE, and ORC at Rutgers via NJDEP.

MANE-VU Technical Support Committee

The MANE-VU Technical Support Committee members serve as first tier reviewers of the work products developed for the SIP quality modeling platform with a focus on regional haze issues. Since members of the three EPA regions and the FLMs are members of the TSC, they provide insights into any issues that may occur involving the acceptability of the OTC SIP quality modeling platform in a SIP so that problems can be corrected at the regional level.

MARAMA Emission Inventory Leads Committee

The MARAMA Emission Inventory Leads Committee is made up of state staff that makes technical recommendations involving the multi-pollutant emissions inventory and assures the inventories.

Schedule

Table 1-4 provides an overview schedule intended as a guideline for finalization of the modeling in the document, though given that the SIP quality modeling platform is being used for planning that runs on different timelines some revisions may occur.

Table 1-4: Multi-pollutant modeling schedule using 2011 platform

PROCESS POINT	TIMEFRAME
2011 Alpha 2 Inventory for Regional Haze	June 2015
2011 Base Case Modeling for Regional Haze	August 2015
2018/2028 Alpha 2 Inventory for Regional Haze	December 2015
2011 Base Case Modeling for Ozone	June 2016
Draft TSD (excepting Future results)	August 2016
2017 Beta Inventory for Ozone	August 2016
OTC Stakeholder Meeting	September 2016
2028 Future Case Modeling for Regional Haze	October 2016
2017 Future Case Modeling for Ozone	October 2016
Final TSD (1 st Revision)	November 2016
NYC and Greater CT Attainment SIP Due (US EPA 2016a)	January 1, 2017
2011 Gamma Inventory and Modeling	October 2017
2011 Gamma 2 Inventory and Modeling	December 2017
2023 Gamma 2 Inventory and Contribution Modeling	December 2017
2020 Gamma Inventory and Modeling	Early 2018
2028 Gamma Inventory (Base/Control) and Modeling	Early 2018
Good Neighbor SIPs Due for 2015 NAAQS	October 1, 2018
Serious 2008 NAAQS Bump Up Attainment SIPs Due	TBD

Conceptual Model

Ozone

The interaction of meteorology, chemistry, and topography lead to a complex process of ozone formation and transport. Ozone episodes in the OTR often begin with an area of high pressure setting up over the southeast United States. As the air moves around the area of high pressure in a clockwise direction, pollution is transported from the Midwest into the OTR. This pollution is a result of power plants, other stationary sources and mobile sources emissions. This summer time high-pressure system can stay in place for days or weeks. This scenario allows for stagnant conditions at the surface in the OTR to form, and in-turn the transported pollution mixes with the local pollution in the late morning hours as the nocturnal inversion breaks down. With this high pressures system in place the air mass, which is characterized by generally sunny and warm conditions, exacerbates ozone concentrations. This meteorological setup promotes ozone formation, as sunlight, warm temperatures and ozone precursors (NOx and VOCs) interact chemically to form ozone. In addition, ozone precursors and ozone are transported into the OTR by way of the nocturnal low level jet (NLLJ), a fast moving river of air that resides approximately 1,000 meters above the surface. All this local and transported polluted air can in some instances accumulate along the coastal OTR areas as the air is kept in place due to bay and sea breezes

Some ozone is natural, or transported internationally, leading to ozone that is not considered relatable to human activity. This US Background ozone in the Eastern United States is in the range of 30 to 35 ppb though it can be as high as 50 ppb in the Intermountain West (US EPA 2014b).

Another complexity involves the nonlinear relationship between NO_x and VOC concentrations and ozone formation. Areas such as the majority of the landscape in the OTR that have extensive forests that produce high levels of isoprene and other VOCs during the summer month achieve the best ozone reduction through reductions in regional NO_x , but dense urban areas such as New York City that lack natural VOC production can be VOC limited, and in some cases NO_x reductions increase ozone levels due to less NO_x being available to destroy already formed ozone through titration.

To address the complexity of ozone formation and transport into the OTR that occurs, the modeling exercise will be based on the conceptual model as described in "The Nature of the Ozone Air Quality Problem in the Ozone Transport Region: A Conceptual Description (Hudson et al. October 2006)."

Visibility

Under natural atmospheric conditions, the view in the eastern United States would extend about 60 to 80 miles, whereas in the western United States this can extend from 110 to 115 miles (Malm May 1999). Current visibility conditions result in less distance that can be viewed due to impacts of anthropogenic pollution. However, the current conditions in the Eastern US are remarkably improved from the early 2000's when the regional haze program began.

Anthropogenic visibility impairment in the eastern United States is largely due to the presence of lightabsorbing and light-scattering PM of which the impact can be estimated through the IMPROVE algorithm. This impact is sensitive to the chemical composition of the particles involved, and also depends strongly on ambient relative humidity. Secondary particles (e.g., ammonium sulfate, ammonium nitrate), which form in the atmosphere through chemical reactions, tend to fall within a size range that is most effective at scattering visible light (NARSTO February 2003). A great level of complexity occurs when evaluating the conceptual model of fine PM_{2.5}. We will be basing the modeling exercise on the conceptual model found in "The Nature of the Fine Particle and Regional Haze Air Quality Problems in the MANE-VU Region: A Conceptual Description (Downs et al. 10 August 2010)."

Base Year Selection

Analyses of monitored data and meteorological data concluded that for the OTR, 2010, 2011 and 2012 are the candidate base years to model for future ozone NAAQS planning and 2011 is the best base year for future Regional Haze and annual PM_{2.5} NAAQS planning. Transport patterns of 2011 ozone events in the OTR confirm that using 2011 would be appropriate. When other factors were considered including availability of a national emission inventory, research data availability, and decisions on base years by nearby RPOs and EPA more weight was given to using 2011 as a base year. As a result, 2011 was determined to be the best candidate base year for this multi-pollutant platform (Ozone, Regional Haze and PM_{2.5}). More details can be found in the document "Future Modeling Platform Base Year Determination" produced by the MANE-VU Technical Support Committee (MANE-VU Technical Support Committee 9 October 2013).

Future Year Selection

Since a 2018 inventory was needed for Baltimore to demonstrate attainment, OTC developed inventories for that year. However, following the DC Circuit decision discussed earlier, developing a 2017 inventory became necessary. As such the 2018 inventory was no longer needed as an ozone modeling inventory.

To conserve resources through multi-pollutant planning, the region also developed a 2028 inventory required for the submission of regional haze SIPs.

As a result we began our modeling platform using 2018 and 2028 future years, and later migrated 2018 to 2017.

References

Clean Air Act Amendments of 1970 (United States 1970).

Clean Air Act Amendments of 1977 (United States 1977).

Clean Air Act Amendments of 1990 (United States 1990).

- Natural Resources Defense Council v. Environmental Protection Agency, No. 12–1321 (United States D.C. Circuit Court of Appeals 23 December 2014).
- Downs, T, Kheirbek, I, Kleiman, G, Miller, P and Weiss, L 2010, *The Nature of the Fine Particle and Regional Haze Air Quality Problems in the MANE-VU Region: A Conceptual Description*, Boston, MA, accessed August 26, 2016, from http://www.nescaum.org/documents/2010-pmconceptual-model-_final_revised-20100810.pdf/>.
- Hudson, R, Downs, T, Fields, R, Kheirbek, I, Kleiman, G, Miller, P and Weiss, L 2006, *The Nature of the Ozone Air Quality Problem in the Ozone Transport Region: A Conceptual Description*, Boston, MA, accessed July 21, 2016, from http://170.63.70.137/eea/docs/dep/air/priorities/5a-ozone-conceptual-model.doc>.

Malm, WC 1999, Introduction to Visibility, Fort Collins, CO.

Mid-Atlantic Northeast Visibility Union 2013, *Future Modeling Platform Base Year Selection Analysis*, accessed from

http://otcair.org/MANEVU/Upload/Publication/Reports/Future%20Modeling%20Platform%20 Base%20Year%20Selection%20Analysis%20-%20Oct%209%202013%20Final.pdf>.

NARSTO 2003, Particulate Matter Science for Policy Makers: A NARSTO Assessment,.

National Ambient Air Quality Standards for Ozone, 62 (United States [Final Rule] 1997).

National Ambient Air Quality Standards for Ozone, 73 (United States [Final Rule] 2008).

- Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards, 77 (United States [Final Rule] 2012).
- US EPA 2014a, 'Draft Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze', accessed from <https://www3.epa.gov/ttn/scram/guidance/guide/Draft_O3-PM-RH_Modeling_Guidance-2014.pdf>.
- US EPA 2014b, Policy Assessment for the Review of the O3 National Ambient Air Quality Standards, Research Triangle Park, NC, accessed from <http://www3.epa.gov/ttn/naaqs/standards/ozone/s_o3_2008_pa.html.>.
- Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation Plan Requirements, 80 (United States [Final Rule] 2015a).

National Ambient Air Quality Standards for Ozone, 80 (United States [Final Rule] 2015b).

- Determinations of Attainment by the Attainment Date, Extensions of the Attainment Date, and Reclassification of Several Areas for the 2008 Ozone National Ambient Air Quality Standards, 81 (United States [Final Rule] 2016).
- Protection of Visibility: Amendments to Requirements for State Plans, 82 (United States [Final Rule] 2017).
- Additional Air Quality Designations for the 2015 Ozone National Ambient Air Quality Standards, 83 (United States [Final Rule] 2018).

Section 2. Evaluation of Meteorological Modeling using WRF

Overview

The OTC Modeling Committee extracted the meteorological data from EPA's 2011 photochemical modeling of the CONUS. That modeling used WRF v.3.4 to develop meteorological data. The OTC modeling used only a subset of the EPA modeling domain as illustrated in Figure 2-1 (US EPA 2014). The meteorological data for the OTC domain was extracted from the EPA CONUS domain modeling using MCIP (Otte and Pleim 2010). The OTC retained the same 12 km square grid size and 35 layer column depth as was used by EPA.

Parameters

Table 2-1 shows the parameters used by WRF v. 3.4 and Table 2-2 shows more details of the layers.

Table 2-1: Parameters used by WRF v. 3.4

VARIABLE	PARAMETER
Horizontal Resolution	36 &12-km
Vertical Resolution	35 layers up to 50 mb
Initialization	NAM 12-km
Land Use Data	NLCD 2006
Land Surface Model	Pleim-Xiu
Planetary Boundary Layer	ACM2
Cumulus Parameterization	Kain-Fritsch (trigger 2)
Microphysics	Morrison 2-moment
Radiation	RRTMG (LW & SW)
Nudging	T, Q and winds above PBL

Layer #	Sigma P	Pressure (mb)	Approximate Height (m AGL)
35	0.00	50.00	17,556
34	0.05	97.50	14,780
33	0.10	145.00	12,822
32	0.15	192.50	11,282
31	0.20	240.00	10,002
30	0.25	287.50	8,901
29	0.30	335.00	7,932
28	0.35	382.50	7,064
27	0.40	430.00	6,275
26	0.45	477.50	5,553
25	0.50	525.00	4,885
24	0.55	572.50	4,264
23	0.60	620.00	3,683
22	0.65	667.50	3,136
21	0.70	715.00	2,619
20	0.74	753.00	2,226
19	0.77	781.50	1,941
18	0.80	810.00	1,665
17	0.82	829.00	1,485
16	0.84	848.00	1,308
15	0.86	867.00	1,134
14	0.88	886.00	964
13	0.90	905.00	797
12	0.91	914.50	714
11	0.92	924.00	632
10	0.93	933.50	551
9	0.94	943.00	470
8	0.95	952.50	390
7	0.96	962.00	311
6	0.97	971.50	232
5	0.98	981.00	154
4	0.99	985.75	115
3	0.99	990.50	77
2	1.00	995.25	38
1	1.00	997 63	19

Table 2-2: Layers used in WRF v 3.4

Assessment

Certain critical parameters of the model were assessed for their ability to characterize actual conditions occurring over the base year. EPA provides the following guidance concerning evaluation of meteorological models in section 2.6.3.

While the air quality models used in attainment demonstrations have consistently been subjected to a rigorous performance assessment, in many cases the meteorological inputs to these models have received less rigorous evaluation, even though this component of the modeling is quite complex and has the potential to substantially affect air quality predictions (Tesche, 2002). EPA recommends that air agencies devote appropriate efforts to the process of evaluating the meteorological inputs to the air quality model as we believe good meteorological model performance will yield more confidence in predictions from the air quality model. One of the objectives of this evaluation should be to determine if the meteorological model output fields represent a reasonable approximation of the actual meteorology that occurred during the modeling period. Further, because it will never be possible to exactly simulate the actual meteorological fields at all points in space/time, a second objective of the evaluation should be to identify and quantify the existing biases and errors in the meteorological predictions in order to allow for a downstream assessment of how the air quality modeling results are affected by issues associated with the meteorological data. To address both objectives, it will be necessary to complete both an operational evaluation (i.e., quantitative, statistical, and graphical comparisons) as well as a more phenomenological assessment (i.e., generally qualitative comparisons of observed features vs. their depiction in the model data).

For our assessment, 2011 WRF modeled data were compared to data for the year. For several factors we relied on EPA's own assessments, while looking more specifically at data in the OTR. We also expanded on EPA's work by looking at the ways WRF modeled temperature, mixing ratio, and the PBL height. Details of the assessment follow.

Model Performance Analyzed by EPA

Wind Speed

EPA found that WRF v. 3.4 slightly over-predicts wind speed in the Eastern United States with the bias being highest during the midday hours. EPA also found that the error in wind displacement tends to be about 5 km, which, being less than the size of a grid cell, should be negligible in affecting position of air masses temporally and spatially (Eyth and Vukovich 2015).

Precipitation comparison

EPA found that WRF v. 3.4 performs adequately in terms of spatial pattern recognition and predicting the amount of precipitation throughout the year when compared to the PRISM climate data. The results compared well in the OTR, including the forecast of a high band of coastal precipitation that occurred during the month of August, although the precipitation in March and September appears to be respectively overestimated and underestimated throughout the OTR (US EPA 2014).

Solar Radiation

Photosynthetically-activated radiation is important in estimating isoprene, which plays an important role in the formation of ozone and secondary organic aerosols in the heavily forested OTR (Carlton and Baker 2011). EPA evaluated the performance of solar radiation using SURFRAD and ISIS network monitors and found little bias during the fall and winter months, but growing bias during the spring with a peak in the summer, "though the spread in over-predictions tends to be less than 100 W/m² on average, with a median bias close to zero (US EPA 2014)." WRF also tends to over-predict from about 7 AM to Noon, while under-predicting from 1 PM to 5 PM. Additionally, EPA stated that "radiation performance evaluation also gives an indirect assessment of how well the model captures cloud formation during daylight hours" so cloud cover would be expected to be under-predicted in the morning and over-predicted in the late afternoon.

Model Performance Analyzed by OTC

Temperature and Mixing Ratio

NYSDEC conducted the review of temperature and mixing ratios for the OTC Modeling Committee. NYSDEC relied on RTMA, a component of the NWS Analysis of Record project and produced by NOAA/NCEP. RTMA provides a high-spatial and temporal resolution analysis/assimilation system for nearsurface weather conditions. RTMA produces hourly analyses at 5 km and 2.5 km grid resolution for the CONUS NDFD grid. The parameters in RTMA include pressure height and air pressure at the surface, air temperature, dew point temperature, and specific humidity at 2m, U- and Vcomponents of wind momentum at 10m, along with cloud cover and precipitation. Observational data from the RTMA 2.5

(<u>http://www.nco.ncep.noaa.gov/pmb/products/rtma/#RTMA2p5</u>) is used in this evaluation and interpolated to the 12km WRF grid.

NYSDEC compared the modeled WRF temperature and mixing ratio values with the real world data from RTMA. NYSDEC found that WRF temperature had a low bias in winter months and a high bias in summer months (Figure 2-2) and the WRF mixing ratio had a high bias in winter months and a low bias in summer months (Figure 2-3). When NYSDEC examined the absolute error, they found that WRF had a low absolute error for temperature and a large absolute error for mixing ratios in the summer (Figure 2-4 and Figure 2-5). Additionally, several low correlation coefficients were observed in July and August on grid cells along the coastline (Figure 2-6 and Figure 2-7).

NYSDEC next compared the diurnal modeled WRF temperature and mixing ratio values during the months of February (winter) and August (summer). In February WRF temperature bias was minimal at all times of day (Figure 2-8) and the mixing ratio was biased high throughout the 24 hours (Figure 2-9). In August WRF temperature bias was high in the morning hours and low in the afternoon (Figure 2-10). Mixing ratio for August was biased low in the evening (Figure 2-11). In February the temperature mean absolute error varied between and 1 and 1.5 °F (Figure 2-12). The mean absolute error for the mixing ratio in February was highest in the evenings with means around 5 g/kg (Figure 2-13). In August the temperature mean absolute error was typically around 1 °F at all times of the day (Figure 2-14) and was highest in the evening, but had a mean absolute error for the mixing rations that was closer to 1.5 g/kg (Figure 2-15). Correlation coefficients were much closer to 1 in February for both temperature and mixing ratio than in August, when in some cases during the early evening hours zero correlation was found (Figure 2-19).

¹ Box plots demarcations are for the 25th, 50th and 75th percentiles, and red crosses are values greater than 2 standard deviations.

Figure 2-11: Diurnal BIAS (RMTA – WRF) mixing ratio in Aug.¹

Figure 2-13: Diurnal absolute error for mixing ratio in Feb.¹

Figure 2-15: Diurnal absolute error for mixing ratio in Aug.¹

August, 2011

Hour (UTC) Figure 2-16: Diurnal correlation coefficient for temp. in Feb.¹

Figure 2-18: Diurnal correlation coefficient for temp. in Aug.¹

Figure 2-17: Diurnal correlation coefficient for mixing ratio in Feb.¹

Figure 2-19: Diurnal correlation coefficient for mixing ratio in Au.¹

2-7
Planetary Boundary Layer

The CALIPSO satellite began operation in 2006 with three instruments, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), the Imaging Infrared Radiometer (IIR), and the Wide Field Camera (WFC). Its repetition cycle is 16 days. CALIOP is a two-wavelength polarization sensitive Lidar (532 nm and 1064 nm). At 532 nm, it has horizontal and vertical resolutions of 333 m and 30 m (up to 8 km), respectively. The CALIPSO aerosol layer product provides data for PBL height covering vast areas on a regular basis.

The NYSDEC derived PBL-height from the CALIPSO Level-1B-attenuated aerosol backscatter profile using the wavelet transform technique, which assumes a structure from the backscatter profile at the height of the air column where the scattering has a strong increase just under the PBL and a strong negative gradient of the backscatter. They averaged the raw signal over 40km to improve signal-to-noise-ratio, and discarded low-cloud data. Then they extracted and refined the CALIPSO Level-2 aerosol layer-top in the lower atmosphere for PBL-height by choosing:

- 1. single aerosol-layer top, while rejecting multiple layers data;
- 2. the layer with the base ≤ 0.3 km above sea level and the top ≤ 6.0 km above sea level, while rejecting aloft aerosol layers;
- 3. the layer with the depth > 0.10 km, while rejecting the potentially noisy outlier layers;
- 4. the layer with cloud-aerosol-discrimination score: $-100 \le CAD \le -20$, while rejecting clouds and low-confidence feature layers; and
- 5. only daytime data to avoid detection of nighttime residual layers.

Figure 2-20: Seasonal Frequency of CALIPSO PBL height

Figure 2-20 showed the frequency distribution of CALIPSO PBL height. The PBL is, on average, lower during the winter at 500 – 1000 meter range and highest during the summer at 1500 – 2000 meter range. WRF underestimated daytime PBL height compared to CALIPSO particularly over water and more so during the summer (Figure 2-21 and Figure 2-22). WRF PBL height showed significantly larger land-water contrast than the CALIPSO data, with the underestimation being larger in summer than in winter (Figure 2-23 - Figure 2-26).

Figure 2-23: CALIPSO to WRF (PBL height ratio) Winter (D/J/F) 2011

Figure 2-24: CALIPSO to WRF (PBL height ratio) Summer (J/J/A) 2011

Figure 2-25: CALIPSO to WRF (PBL height ratio) Spring (M/A/M) 2011

Figure 2-26: CALIPSO to WRF (PBL height ratio) Fall (S/O/N)

One area of uncertainty involves PBL height estimates over bodies of water. CALIPSO data lacks the information necessary to properly evaluate PBL over water.

Summary

EPA has developed a significant look at the WRF v.3.4 model runs that OTC/MANE-VU is employing in its modeling platform and they have found the model to be quite acceptable for use in their national regulatory processes. OTC reviewed EPA's assessment and found that WRF v.3.4 modeled the Eastern US appropriately with regards to the factors EPA analyzed. NYSDEC went further to examine how WRF v.3.4 modeled temperature, mixing ratios, and PBL compared to monitored data and also found the results to be reasonable approximations. The data presented in EPA's documentation as well as OTC's analysis also provide evidence of areas needing further scrutiny (e.g., PBL height over bodies of water). OTC Modeling Committee expects that the 12 km WRF v.3.4 model results will lead to scientifically sound air quality modeling.

References

- Carlton, AG and Baker, KR 2011, 'Photochemical Modeling of the Ozark Isoprene Volcano: MEGAN, BEIS, and Their Impacts on Air Quality Predictions', *Environmental Science & Technology*, vol. 45, no. 10, pp. 4438–4445.
- Eyth, A and Vukovich, J 2015, 'Technical Support Document (TSD) Preparation of Emissions Inventories for the Version 6.2, 2011 Emissions Modeling Platform', accessed March 18, 2016, from <http://www3.epa.gov/ttn/chief/emch/2011v6/2011v6_2_2017_2025_EmisMod_TSD_ aug2015.pdf>.
- Otte, TL and Pleim, JE 2010, 'The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1', accessed March 16, 2016, from <http://www.geosci-model-dev.net/3/243/2010/gmd-3-243-2010.pdf>.
- US EPA 2014, 'Meteorological Model Performance for Annual 2011 WRF v3.4 Simulation', accessed March 4, 2016, from https://www3.epa.gov/ttn/scram/reports/MET_TSD_2011_final_11-26-14.pdf>.

Section 3. Evaluation of Biogenic Model Versions

Overview

The modeling platform made available by EPA, v. 6.2, relied on BEIS v. 3.6 for biogenic emissions (Eyth and Vukovich 2015, p.2). More recently BEIS v. 3.6.1 was produced which came with more recent land use data which was expected to lead to more accurate results. OTC expects that in future modeling EPA will upgrade to the more recent version of BEIS, but since that has not yet occurred OTC determined that a brief evaluation of BEIS v. 3.6.1 was warranted.

Assessment

NYSDEC conducted an evaluation of two versions (3.6 and 3.6.1) of the biogenic model BEIS in order to determine which version produced more accurate base year modeling results. The major difference between the two versions of BEIS is the land use data employed by the model: v. 3.6 uses NCLD 2006 and v.3.6.1 uses NCLD 2011 (<u>http://www.mrlc.gov/</u>). The land use data in v. 3.6.1 shows much higher levels of isoprene than v. 3.6 (Bash, Baker and Beaver 2015). It was expected that v. 3.6.1 would produce the more accurate results given that it more accurately reflects the state of land use in the base year and also due to the improvements in isoprene production in the newer version.

In order to test the accuracy of the two biogenic model versions, two base year photochemical modeling runs were completed using CMAQ. The details on how CMAQ was configured for these model runs are in a later section (see Section 5). The model runs were completed using the 2011 Alpha 2 inventory (see Section 4).

Overall the difference between using v. 3.6.1 and v. 3.6 did not change the overall bias and error in the modeled results in the OTR as seen in Figure 3-1 (MFB), Figure 3-2 (MFE), and Figure 3-3 (MAGE), but the improvements in the response at the high ozone monitors warrant upgrading to BEIS v. 3.6.1.

Figure 3-3: MAGE (ppb) for OTR monitors for CMAQ model runs conducted using BEIS 3.61 (left axis) and BEIS 3.6 (bottom axis)

In order to test the impact of design value projections between the two biogenic model versions, two future year photochemical modeling runs were completed using CMAQ. The details on how CMAQ was configured for these model runs are in a later section (see Section 5). The model runs were completed using the 2018 Alpha 2 inventory (see Section 8).

NYSDEC found that using BEIS v. 3.6.1 resulted in a greater response to reductions in NO_x at many higher valued monitors as seen in Table 3-1. One exception to this rule was Sherwood Island, CT (Monitor ID #090019003), which saw increases in ozone in both photochemical model runs.

Four monitors, including Sherwood Island, saw no change in projected ozone when v. 3.6.1 was used, and this is likely due to their proximity to the land-water interface. The highest value in the 9x9 grid surrounding the monitor is used in calculating the projected ozone at a monitor. The highest values at the nearby grid cells to these monitors are likely over water, which means those grid cells, are not impacted by changes in biogenic emissions. As a result we would expect to see little to no change in projected ozone at monitors near to the land-water interface. More details on the issues surrounding projected ozone calculations for monitors near the land-water interface are in Section 10.

AQS Code	Site	DVC2011	DVF BEIS v. 3.6	DVF BEIS v. 3.6.1
090019003	Sherwood Island	83.7	84	84
240251001	Edgewood	90	82	81
361030002	Babylon	83.3	82	77
090010017	Greenwich Point Park	80.3	80	77
090013007	Fairfield	84.3	78	78
360810124	Queens College	78	78	74
361192004	White Plains	75.3	78	74
090099002	Hammonasset State Park	85.7	77	77
360850067	Susan Wagner HS	81.3	77	77
340150002	Clarksboro	84.3	75	75
360050133	Pfizer Lab Site	74	75	72
421010024	North East Airport (NEA)	83.3	75	74

Table 3-1: Modeled 2018 DVFs for 12 high ozone monitors in the OTR comparing BEIS v. 3.6 and BEIS v. 3.6.1

Due to the increased accuracy associated with BEIS v. 3.6.1, this version was used in the OTC/MANE-VU modeling.

References

- Bash, JO, Baker, KR and Beaver, MR 2015, 'Evaluation of improved land use and canopy representation in BEIS v3.61 with biogenic VOC measurements in California', *Geoscientific Model Development Discussions*, vol. 8, no. 9, pp. 8117–8154.
- Eyth, A and Vukovich, J 2015, 'Technical Support Document (TSD) Preparation of Emissions Inventories for the Version 6.2, 2011 Emissions Modeling Platform', accessed March 18, 2016, from <http://www3.epa.gov/ttn/chief/emch/2011v6/2011v6_2_2017_2025_EmisMod_TSD_aug2015 .pdf>.

Section 4. Emissions Inventories and Processing for 2011 12km Base Year Simulation

Overviews

ERTAC EGU

The majority of the tools that OTC/MANE-VU are currently using to develop emissions inventories have already become standards in the field including MOVES for onroad emissions, NONROAD for nonroad emissions, EPA's RWC tool for residential wood combustion, BEIS for biogenic emissions, and EMF for growing inventories for other sectors. However, the ERTAC EGU projection tool is not as well known.

The ERTAC EGU tool has been developed through the ERTAC collaborative process for use in projecting future year EGU emissions. However, some units are partial year reporters or do not have to report SO_2 emissions to CAMD due to only being in the NO_x Budget Trading Program. To resolve these issues the ERTAC EGU group ran ERTAC EGU projecting the CAMD data to the base year with no growth. This run, called Base Year Equals Future Year or "BY=FY", allowed missing emissions to be included, as well as smoothing out erratic data that is often created when missing data are replaced with maximum possible values (McDill et al. 2015).

Alpha

The Alpha version of the inventory was used to generate CMAQ-ready emissions for initial modeling. EPA's 2011 emissions data from nearly every sector were included directly into CMAQ without SMOKE processing since these data were not altered in any way. The inventories were based on v. 6.2 of the EPA modeling inventory (also called v. "eh", which is in turn was based on 2011 NEI v. 2) and were processed through SMOKE v. 3.5.1 (Eyth et al. 2015). Although OTC/MANE-VU did not process most of the emissions using SMOKE, the SMOKE input files are available on the MARAMA EMF system.

The exceptions that NYSDEC did process using SMOKE are the ERTAC EGU, Small EGU, and Non-EGU Point sectors. ERTAC v. 2.3 was used in the Alpha inventory. These were all processed using SMOKE v. 3.6.

Alpha 2

The Alpha 2 version of the inventory was primarily done to correct the C3 Marine sector to rectify double counting that occurred in the inventories used in the Alpha inventory (McDill et al. 2015). In addition, a few other minor corrections were made. This was originally intended to be used in 2018 Regional Haze SIPs, but significant improvements have been made and Gamma will now be used. EPA's 2011 emissions data from nearly every sector were included directly into CMAQ without SMOKE processing since these data were not altered in any way. EPA had processed their inventories using SMOKE v. 3.5.1 (Eyth et al. 2015).

Beta/Beta 2

The Beta 2 version of the inventory is intended to be used in 2008 Ozone SIPs. For the base year there are no differences between Beta and Beta 2, they exist only in the future year work. The Beta 2 inventory uses some of the same files used in Alpha and Alpha 2 inventories that were provided by EPA, but it also relies on files that were updated in EPA's "ek" inventory and new inputs compiled by

MARAMA, which includes states' feedback. The sectors that were updated from EPA's "ek" inventory required SMOKE processing using v. 3.7, and in the case of onroad mobile running SMOKE-MOVES v. 3.7. ERTAC v. 2.3 was upgraded to v. 2.5 for the Beta/Beta 2 inventory, which includes updated stack parameters and the addition of SO₂ emissions for NO_X only reporters. Full descriptions of where each inventory sector was taken from are shown in Table 4-1. The following sectors were reprocessed through SMOKE for the Beta/Beta 2 inventory:

- 1. Agriculture
- 2. ERTAC EGU
- 3. Ethanol
- 4. Non-EGU Point
- 5. Non-ERTAC IPM EGUs
- 6. Non-point Source
- 7. Nonroad
- 8. Point Oil & Gas
- 9. Refueling
- 10. Residential Wood Combustion
- 11. Wild Fires

Gamma

The Gamma version of the inventory is intended to be used as the base year inventory for Regional Haze SIPs and any attainment demonstrations needed for areas that are reclassified to serious for the 2008 Ozone NAAQS. The Gamma inventory is based on files developed by MARAMA, the ERTAC EGU Workgroup, and EPA. Details on how the sectors that were updated for the Gamma inventory by MARAMA were developed are available in a separate TSD (McDill et al. 2018). Files taken from EPA primarily use the "el" version of EPA's inventory, which includes feedback provided to EPA by our states and MARAMA (Eyth et al. 2015). However, improvements found in the oil & gas, marine and nonroad inventories from "en" were included (US EPA 2017). Full descriptions of where each inventory sector was taken from are shown in Table 4-1. Sectors taken from EPA inventories needed to be re-gridded in order to match the size of the OTC domain.

Table 4-1: Inventories used at each stage of OTC 2011 base year modeling
--

SECTOR	Alpha/Alpha 2	Beta/Beta 2	Gamma
Agricultural Fugitive Dust	EPA v6.2 eh	EPA v6.2 eh	EPA v6.2 eh
Agricultural	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 ek
Agricultural Fire	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 ek
Biogenics	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 ek
C1C2 Marine	EPA v6.2 eh	EPA v6.2 eh	EPA v6.3 en
C3 Marine	EPA v6.2 eh (α), EPA v6.3 ej (α 2)	EPA v6.3 ek	EPA v6.3 en
ERTAC EGU	ERTAC v2.3	ERTAC v2.5L	ERTAC v2.5L
Ethanol	MARAMA α	MARAMA β	MARAMA γ
Non-EGU Point	MARAMA α	MARAMA β	MARAMA γ
Point source offsets for DE	n/a	MARAMA β	MARAMA γ
Non-ERTAC IPM EGUs	MARAMA α	MARAMA β	MARAMA γ
Non-Point	MARAMA α	MARAMA β	MARAMA γ
Non-point Oil & Gas	EPA v6.2 eh	MARAMA β	MARAMA γ
Nonroad	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 en
Onroad	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 el
Point Oil & Gas	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 en
Prescribed/Wild Fires	EPA v6.2 eh	EPA v6.2 eh	EPA v6.2 eh
Rail	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 ek

SECTOR	Alpha/Alpha 2	Beta/Beta 2	Gamma
Refueling	MARAMA α	MARAMA β	MARAMA β
RWC	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 ek
Canadian	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 el

Emission Inventory Sectors

This section lists the emission inventory sectors with a brief description of the sector. A full list of all of the files used is in Appendix B.

Agricultural

 NH_3 emissions, at the county and annual resolution, from nonpoint livestock and from fertilizer application.

Agricultural Fugitive Dust

PM₁₀ and PM_{2.5} at the county and annual resolution from nonpoint fugitive dust sources including building construction, road construction, agricultural dust, and road dust.

Agricultural Fires

Point source daily fires from agricultural burning computed using SMARTFIRE2.

Biogenic Emissions

Non-anthropogenic emissions at the grid cell and hourly resolution, including emissions from Canada, generated with the BEIS v. 3.61.

C1/C2 Marine and Rail

Locomotives and category 1 (C1) and category 2 (C2) commercial marine vessel emissions at the county and annual resolution. This category also includes some Category 3 emissions that were estimated by state agencies. Where these overlapped with the International Marine Organization (IMO) Category 3 sector described in the following section, the IMO Category 3 emissions were deleted to avoid double counting.

C3 Marine (IMO)

IMO Category 3 (C3) commercial marine vessel emissions at annual resolution - in the Alpha inventory distributed throughout the Atlantic Ocean, and in the Alpha 2 and Beta inventories distributed to shipping lanes.

ERTAC EGUs

All EGUs that are projected through the ERTAC projection tool, at the point and hourly resolution. These EGUs are from the universe of units with CEMS that are tracked by CAMD (though several units that meet that description are removed at state request) and were almost entirely found in EPA's sector files projected by IPM.

Ethanol

Point sources that produce ethanol fuel.

Non-EGU Point

All point emissions at the point and annual resolution, not included in other files. Some units were removed from EPA's prepared file since they were included in an ERTAC file. In the Beta inventory some sources were determined to be peaking EGUs and temporalized using an hourly emission file.

Non-ERTAC IPM EGUs

All units, at the point and annual resolution projected by EPA using IPM that were not projected using ERTAC and were also not included in the Non-EGU point sector. In the Beta inventory some sources were confirmed to be peaking EGUs and temporalized using an hourly emission file.

Non-point

All nonpoint emissions, at the county and annual resolution, which were not included in other files. Agricultural burning and portable fuel container emissions are merged into this sector.

Non-point Oil & Gas

Nonpoint emissions from the oil and gas sector at the county and annual resolution.

Nonroad

Mobile emissions, at the county and monthly resolution, processed using NONROAD 2008 from vehicles and equipment that are not included in other files.

Onroad

Mobile emissions, at the grid cell and hourly resolution, from onroad vehicles processed using MOVES and SMOKE-MOVES. The MOVES emission factors used for the Alpha and Alpha 2 inventories were produced using MOVES2014 and the emissions factors used for Beta were produced using MOVES2014a.

Point Oil & Gas

Point emissions from the oil and gas sector at the point and annual resolution.

Prescribed Burn

Point source daily prescribed fires computed using SMARTFIRE2.

Refueling

Non-point source emissions from gas station refueling.

Residential Wood Combustion

Nonpoint emissions from residential wood combustion at the county and annual resolution.

Wild Fires

Point source daily wildfires computed using SMARTFIRE2.

Speciation

The speciation and cross-reference files were taken from EPA's 2011 v. 6.2 modeling platform for the Alpha and Beta modeling and EPA's 2011 v. 6.3 modeling platform for the Gamma modeling and are based on the SPECIATE 4.4 database (Abt Associates 19 February 2014; Eyth et al. 2015; US EPA 2017)

Spatial Allocation

The spatial surrogates for the 12 km domain for both the United States and Canada were extracted from the national grid 12 km U.S. gridding surrogates provided with EPA's 2011 v. 6.2 modeling platform for the Alpha and Beta modeling and the v. 6.3 modeling platform for the Gamma modeling (Adelman 1 July 2015; Eyth et al. 2015; US EPA 2017).

Temporal Allocation

In most cases emissions for the sectors were allocated temporally in the same fashion as done in EPA's 2011 v. 6.2 modeling platform for the Alpha and Beta modeling and in the v. 6.3 modeling platform for the Gamma modeling (Eyth et al. 2015). Exceptions to this are ERTAC EGU in Alpha, Beta, and Gamma, and Non-ERTAC IPM EGUs and Non-EGU Point in Beta and Gamma.

In the case of ERTAC EGU, the ERTAC code produces hourly EGU emissions that are grounded in the base year CEMS data. As mentioned earlier, the hourly results were developed using ERTAC EGU to create the BY=FY run. V. 1.01 of the ERTAC EGU code was used in all inventories. The input files were from ERTAC EGU v. 2.3 for the Alpha and Alpha 2 inventories, and from ERTAC EGU v. 2.5 for the Beta inventory. In all cases they were post-processed using v. 1.02 of the ERTAC to SMOKE conversion tool. Given the fine level of detail that ERTAC EGU produces, the hourly ERTAC EGU results are used to temporalize EGUs in the modeling platform. In order to include the temporalization during SMOKE processing, hourly ff10 files were produced by the ERTAC to SMOKE post processor in addition to the annual ff10 files.

In the case of Non-ERTAC IPM EGUs and Non-EGU Point, some of the units were confirmed to be EGUs <25 MW (Small EGUs) through an MDE research project as outlined in Appendix A of the temporalization documentation (Ozone Transport Commission 10 November 2016). The units were expected to be EGUs based on their SCC and NAICS, and further refinement to the list of EGUs occurred through a state comment period. These units still function as EGUs, but produce too small an amount of power and emissions to be required to report hourly emissions to CAMD and thus are not temporalized through the ERTAC EGU process. MDE has developed a temporalization profile using hourly data from units that burn the same primary fuel and do report to CAMD. The EMF tool was used to create hourly profiles for these units so that they operate during times when electricity demand is highest rather than at a steady rate throughout the year. An example of a gas fired Small EGU in MD is shown in Figure 4-1 and details on the profiles employed are in Appendix C of the documentation developed by MDE (Ozone Transport Commission 10 November 2016). Examples of the change in daily emissions that result from the application of the temporal profiles on three HEDDs in 2011 are in Table 4-2.

In order to develop the hourly ff10 files for the Small EGUs to process in SMOKE a multistep process was implemented. First, default temporal profiles were developed using SMOKE (TREF and TPRO) and they were then imported into EMF. Next, hourly ff10 files were produced in EMF using the imported profiles. MDE in conjunction with UMD completed this work.

It should be noted that EPA did undertake an approach to temporalizing some non-CAMD EGUs in the 2011 v. 6.2 platform using average fuel-specific season-to-month factors for each of the 64 IPM regions (Eyth et al. 2015). OTC decided our approach was an improvement because it contained a more expansive list of sources that should be temporalized that was confirmed by individual states.

Table 4-2: Change in NO _x emissions (tons) on selected episode days in July 2011 as the result of Small EGU temporalization	on
--	----

	July 20	July 21	July 22
MANE-VU	25	41	48
LADCO	211	230	186
SESARM	20	23	19
CENSARA	83	42	38

Figure 4-1: Comparison of temporalization of SMOKE defaults, MANE-VU gas temporal profile, and operational data from a typical gas fired Small EGU in MD

SMOKE Processed Emission Results

In order to quality assure that the outputs from SMOKE were properly distributed geographically and to develop a better understanding of the geographical and temporalization of emissions, we looked at daily emissions on a typical summer day (June 24, 2011) and during an ozone event (July 22, 2011). We looked at NO_x , VOC (with and without biogenic emissions) and SO_2 gridded emissions. Urban areas, interstates in rural areas, and shipping lanes are clearly distinguishable in the maps of NO_x emissions

(Figure 4-2). There are minor differences at this scale on a peak day where one can notice increases in some grid cells during the ozone event (Figure 4-3). On a typical summer day, VOC emissions are higher as one looks further south, which is expected given the greater biogenic emissions, found in the southern forests (Figure 4-4). It is quite noticeable how much VOC emissions increase on an ozone-conducive day throughout the modeling domain (Figure 4-5). When biogenic emissions are removed from the mapping there is little difference between a typical summer day and an ozone event, but one can clearly distinguish urban cores where the majority of anthropogenic VOCs are produced (Figure 4-6 and Figure 4-7). One can see the importance of point sources in terms of SO₂ emissions and very minor increases throughout the modeling domain during an ozone event (Figure 4-8 and Figure 4-9).

Additionally, summary tables of emissions by RPO, sector, and pollutant were outputted from SMOKE processing. States in an RPO that are fully within the modeling domain are summed separately from states in an RPO outside of the modeling domain due to emission summaries not being available for states partially in the domain for many future years. These results are aggregated for the 2011 Alpha 2 inventory in Table 4-3, the Beta inventory in Table 4-4, and the Gamma inventory in Table 4-5.

Figure 4-3: MARAMA Alpha 2 NO_x SMOKE Gridded Emissions (High Ozone Day, July 22, 2011)

Figure 4-4: MARAMA Alpha 2 VOC All SMOKE Gridded Emissions (Typical Summer Day, June 24, 2011)

Figure 4-6: MARAMA Alpha 2 VOC Anthropogenic SMOKE Gridded Emissions (Typical Summer Day, June 24, 2011)

Figure 4-8: MARAMA Alpha 2 SO $_2$ SMOKE Gridded Emissions (Typical Summer Day, June 24, 2011)

Figure 4-5: MARAMA Alpha 2 VOC All SMOKE Gridded Emissions (High Ozone Day, July 22, 2011)

Figure 4-7: MARAMA Alpha 2 VOC Anthropogenic SMOKE Gridded Emissions (High Ozone Day, July 22, 2011)

Figure 4-9: MARAMA Alpha 2 SO $_2$ SMOKE Gridded Emissions (High Ozone Day, July 22, 2011)

Full State/ Partial State	RPO	ERTAC EGU	Non-EGU Point & Small EGU	Nonroad (including M/A/R)	Onroad	Non-point (including RWC & Refueling)	Oil/Gas	Other (including biogenic)	Total
					NOx				
Full State	MANE-VU	206,647	158,385	346,366	699,944	195,502	53,407	1,018	1,661,269
	LADCO	377,389	250,367	418,740	943,808	155,233	83,107	2,607	2,231,251
a .: I	SESARM	2/3,/29	1/5,24/	289,050	/85,/83	71,569	93,586	17,077	1,706,041
Partial	LADCO	48,030	53,301	/3,/58	121,024	26,138	2,878	9,851	334,980
State	SESARM	141,297	107,901	146,227	459,332	37,624	58,215	60,218	1,010,813
	CENSARA	476,036	325,158	711,395	1,150,395	143,345	626,084	116,659	3,549,072
			159,482	218,823	249,114	59,134			686,553
	US EEZ			517,740					517,740
NO Total	interntni.	1 532 130	1 532 130	9,170	2 721 200	4 400 200	C00 F 4 4	017 270	9,170
NO _X lotal		1,523,128	1,523,128	1,229,840	2,731,268	4,409,399	688,544	917,278	207,430
Full State	MANE-VU	2.482	53,690	366.461	356.969	678.462	29.028	21.238	1.508.331
	LADCO	6.047	149.483	392.727	472.135	666.820	85.057	39.304	1.811.573
	SESARM	5.064	159 866	235 810	364 008	508 655	94 089	186 020	1 553 512
Partial		1 616	20.089	76 960	65 891	120.062	131	188 478	473 227
State	SESARM	1,010	74 385	131 922	222 323	281 679	50.653	310 917	1 076 035
State	CENISARA	4,133	200 440	260 521	107 121	875 210	1 520 510	1 625 856	5 010 642
	Canada	11,973	1 /157	157 565	437,121	532 666	1,320,310	1,033,630	809 422
			1,457	14 702	117,755	332,000			14 702
	Interntal			220					220
VOC Total	internan.	31 339	668 411	1 646 099	2 096 182	3 663 553	1 779 468	2 381 813	12,266,865
		51,000	000,111	1,010,000	SO ₂	5,005,505	1), , ,), 100	2,001,010	11)100,000
Full State	MANE-VU	462.603	108.742	25.481	5.069	135.409	2.103	612	740.020
	LADCO	1.409.343	336.342	5.794	4.877	19.164	1.362	1.353	1.778.235
	SESARM	669.868	170.096	7.888	3.820	31,725	1.762	7.640	892.799
Partial	LADCO	93 275	20 937	644	598	6 385	82	5 687	127,609
State	SESARM	409 350	90 427	3 944	2 220	30 396	20.854	20 498	577 688
State	CENSARA	1 087 853	324 686	23 579	5 594	44 155	21,060	58 760	1 565 688
	Canada	1,007,000	136 581	36 3/3	1 380	36 964	21,000	56,766	511 271
	LIS FF7		430,304	50,545	1,500	50,504			50 654
	Interntal			5 775					5 775
SO ₂ Total	internetii	4.132.292	1,487,814	160.102	23.559	304,198	47.222	94.551	6.249.738
		, - , -	, - ,-		PM _{2.5}	/	,	- /	-, -,
Full State	MANE-VU	17,952	28,839	27,585	26,839	161,721	1,676	27,277	291,889
	LADCO	61.377	53.855	31.401	34.096	156.230	1.518	130.498	468.975
	SESARM	43.808	41.690	20.724	24.271	96.005	2.100	110.274	338.871
Partial	LADCO	6.537	15.190	5.866	4.407	43.681	29	91.489	167.199
State	SESARM	23.368	37.514	10.706	14.186	87.149	1.342	273.774	448.038
	CENSARA	77.558	84.589	40.187	38.085	123.174	15.966	1.026.201	1.405.760
	Canada	/	25.777	16,908	8.934	105.607	-,	323.474	480.700
	US EEZ		,	15.722	-,				15.722
	Interntal			716					716
PM ₂ = Total	interneti.	230 599	287 454	169 815	150 818	773 568	22 631	1 982 986	3.617.870
		200,000	2077101	103,013	NH2	110,000	22)001	1,502,500	0,027,070
Full State	MANE-VU	2,925	4,974	380	18,106	14,580	14	165,666	206,644
	LADCO	-	7,682	447	18,017	19,727	11	478,355	524,240
	SESARM	444	6.735	283	15.543	5.513	4	348.367	376.889
Partial	LADCO	-	1.241	76	2.402	3.240	47	201.881	208.887
State	SESARM	-	9.762	146	8.858	2.843	2	231.178	252.789
	CENSARA	-	22.208	1.121	19.701	17.123	52	1.366.962	1.427.166
	Canada		4.983	250	15.303	3.091		183.853	207.480
	US EEZ		.,			-,			-
	Interntnl.			-					-
NH ₃ Total		3,369	57,585	2,702	97,929	66,117	129	2,976,263	3,204,094
		,	,	,	со	,			
Full State	MANE-VU	41,340	235,436	2,769,526	3,498,866	892,083	40,947	90,739	7,568,938
	LADCO	132,762	741,458	2,531,114	4,602,854	951,801	53,071	166,190	9,179,250
	SESARM	101,585	328,980	1,650.091	3,519.155	523,080	81,536	842,359	7,046,786
Partial	LADCO	20.662	29,266	354,226	631.171	246.236	552	800,131	2.082.244
State	SESARM	65.145	160.224	853,844	2.097 741	495.024	28,960	1.972 145	5.673.083
	CENSARA	201.076	412,960	1.820.066	4,791 071	783.366	474,018	6,907 096	15.389.654
	Canada	_01,070	585 732	1 889 8/1	2 204 940	648 333	., .,510	0,007,000	5 328 846
	US FF7		505,752	83 618	2,204,340	0,000			83.618
	Interntal			778					778
CO Total	ancernun.	562 570	2 494 057	11 953 104	21 345 700	4 539 977	679 085	10 778 661	52 352 197
CO I Utal		502,370	2,434,037	11,333,104	21,343,/33	4,000,722	019,003	10,770,001	32,333,137

Table 4-3: 2011 base case Alpha 2 emissions (tons) by pollutant and RPO for aggregated sectors from SMOKE processed emission reports

Full State/ Partial State	RPO	ERTAC EGU	Non-EGU Point & Small EGU	Nonroad (including M/A/R)	Onroad	Non-point (including RWC & Refueling)	Oil/Gas	Other (including biogenic)	Total
					NOx				
Full State	MANE-VU	206,457	155,892	346,258	717,012	195,137	53,407	1,165	1,675,326
	LADCO	381,339	249,658	418,740	902,000	155,219	83,107	2,612	2,192,675
	SESARM	273,719	172,613	289,050	778,220	68,694	94,145	18,262	1,694,703
Partial	LADCO	26,996	53,296	73,758	79,420	25,065	2,878	9,926	271,339
State	SESARM	141,296	107,513	146,227	390,760	33,537	58,219	61,591	939,143
	CENSARA	491.941	323.997	805.686	284.258	127.522	626.557	127.577	2.787.538
	Canada	- /-	159.482	218.823	249.114	59.134	,	,-	686.553
	US FF7			517 740	,				517,740
	Interntal			9 170					9 1 7 0
NO ₂ Total		1 521 7/8	1 222 //51	2 825 450	3 400 784	664 307	918 31/	221 132	10 774 186
NO _X Total		1,521,748	1,222,431	2,823,430	3,400,784	004,307	510,514	221,132	10,774,180
Full State	MANE-VII	2 477	53 046	366 247	362 357	701 998	29.028	21 570	1 536 724
i un state		6,576	148 200	202 727	127 275	701,550	85.057	20,212	1 800 020
	LADCO	5,370	140,290	392,727	457,575	700,392	04,120	100.250	1,009,929
	SESARIVI	5,216	159,469	235,810	364,193	533,860	94,138	188,258	1,580,944
Partial	LADCO	499	20,090	76,960	43,299	122,169	131	188,610	451,758
State	SESARM	2,792	74,096	131,922	189,829	291,912	50,653	313,325	1,054,530
	CENSARA	10,069	208,963	327,909	109,269	879,881	1,520,538	1,654,955	4,711,584
	Canada		1,457	157,565	117,735	532,666			809,423
	US EEZ			14,792					14,792
	Interntnl.			1					1
VOC Total		27,628	665,412	1,703,934	1,624,056	3,763,079	1,779,546	2,406,029	11,969,684
					SO2				
Full State	MANE-VU	462,551	108,301	25,481	4,793	135,936	2,102	668	739,833
	LADCO	1,463,978	336,334	5,794	4,394	19,157	1,362	1,355	1,832,374
	SESARM	669,831	169,991	7,888	3,626	26,061	1,761	8,016	887,174
Partial	LADCO	36.332	20.930	644	391	5.894	82	5.721	69.996
State	SESARM	409 350	85 352	3 944	1 817	28 511	25 913	21 104	575,989
otate	CENSARA	1 088 313	324 666	23 801	1 071	38 551	21,060	62 176	1 559 638
	Canada	1,000,010	136 584	36 3/3	1 380	36.964	21,000	02)270	511 271
			430,304	50,545	1,500	50,504			50.654
	US EEZ			50,054					50,054
60 T-4-1	interntni.	4 4 2 0 2 5 5	1 402 450	5,775	17 470	201 074	52.270	00.040	5,775
SO ₂ Total		4,130,355	1,482,158	160,324	17,473	291,074	52,279	99,040	6,232,703
Full State		17 007	28 660	27 5 0 2	PIVI2.5	150 633	1 676	27.016	200.496
Full State	IVIANE-VU	17,987	28,669	27,582	27,133	159,622	1,676	27,816	290,486
	LADCO	49,075	53,709	31,401	30,690	156,199	1,518	130,509	453,100
	SESARM	36,920	41,614	20,724	23,652	90,434	2,107	113,554	329,004
Partial	LADCO	2,562	15,190	5,866	2,960	41,492	29	91,658	159,757
State	SESARM	12,623	37,192	10,706	11,934	78,532	1,345	274,952	427,284
	CENSARA	45,622	84,418	48,640	10,236	88,011	15,977	1,048,693	1,341,597
	Canada		25,777	16,908	8,934	105,607		323,474	480,700
	US EEZ			15.722					15.722
	Interntnl.			716					716
PM ₂₅ Total	, meennem	164,788	286,568	178.265	115,539	719.897	22.653	2.010 656	3.498.366
11112.5 10001		104,700	200,000	170,205	NH2	713,037	22,035	2,010,030	3,430,300
Full State	MANE-VU	2.923	4.950	380	18.094	14.555	14	165.673	206.588
	LADCO	891	7.682	447	17.582	19.727	11	478.355	524.696
	SESARM	1 498	6 690	283	15 464	5 501	4	348 367	377 808
Partial		107	1 240	76	1 5 5 5	2 240	47	201 881	208 147
Stata	SECADA	1 965	0,667	146	7,555	3,240	47	201,001	200,147
State	SESARIVI	1,805	9,007	140	7,002	2,843	2	231,178	253,302
	CENSARA	6,488	22,207	1,223	4,131	14,549	52	1,392,026	1,440,676
	Canada		4,983	250	15,303	3,091		183,853	207,480
	US EEZ			216					216
	Interntnl.								
NH₃ Total		13,772	57,419	3,020	79,732	63,507	129	3,001,334	3,218,912
					CO				
Full State	MANE-VU	41,310	234,702	2,768,157	3,495,020	881,048	40,947	95,551	7,556,735
	LADCO	81,510	740,716	2,531,114	4,277,100	951,474	53,071	166,302	8,801,287
	SESARM	76,219	327,271	1,650,091	3,491,900	471,969	81,711	870,770	6,969,931
Partial	LADCO	7,427	29,263	354,226	407,300	222,711	552	801,858	1,823,338
State	SESARM	28,503	159,809	853,844	1,779,900	404,229	28,963	2,003,907	5,259,155
-	CENSARA	199,495	412,002	2,279.704	985,507	434,457	474,162	7,145.277	11,930.605
	Canada	,	585 732	1 889 841	2 204 940	648 333	,101	.,,	5.328 846
	LIS FF7		303,132	83 61 8	2,204,340	0,000			83 618
	Interntal			779					779
CO Tatal	miernin.	124 464	2 490 405	12 444 272	16 644 667	4 01 4 224	670 407	11.002.000	110
CO I otal		434,464	2,489,495	12,411,373	10,041,00/	4,014,221	679,407	11,083,666	47,754,292

Table 4-4: 2011 base case Beta emissions (tons) by pollutant and RPO for aggregated sectors from SMOKE processed emission reports

Full State/ Partial State	RPO	ERTAC EGU	Non-EGU Point & Small EGU	Nonroad (including M/A/R)*	Onroad	Non-point (including RWC & Refueling)*	Oil/Gas	Other (including biogenic)	Total
					NOx				
Full State	MANE-VU	206,457	155,892	344,671	717,012	194,924	53,405	1,165	1,673,526
	LADCO	381,339	249,658	416,060	902,000	155,054	83,106	2,612	2,189,829
	SESARM	273,719	172,613	287,687	778,220	68,606	94,145	18,262	1,693,252
Partial	LADCO	26,996	53,296	73,317	79,420	25,038	2,878	9,926	270,872
State	SESARM	141,296	107,513	145,531	390,760	33,499	58,219	61,591	938,408
	CENSARA	491,941	323,997	802,670	284,258	127,377	626,557	127,577	2,784,378
	Canada		318,964	218,823	249,114	118,199			905,100
	US EEZ			517,740					517,740
	Interntnl.			9,170					9,170
NO _x Total		1,521,748	1,381,933	2,815,668	3,400,784	722,698	918,311	221,132	10,982,273
					VOC				
Full State	MANE-VU	2,477	53,046	369,537	362,357	703,086	29,028	21,570	1,541,101
	LADCO	6,576	148,290	397,467	437,375	721,835	85,057	39,312	1,835,912
	SESARM	5,216	159,469	238,561	364,193	571,496	94,138	188,258	1,621,331
Partial	LADCO	499	20,090	77,797	43,299	122,071	131	188,610	452,497
State	SESARM	2,792	74,096	133,346	189,829	291,611	50,653	313,325	1,055,653
	CENSARA	10,069	208,963	331,322	109,269	879,002	1,520,538	1,654,955	4,714,118
	Canada		2,914	157,565	117,735	1,064,690			1,342,904
	US EEZ			14,792					14,792
	Interntnl.			1					1
VOC Total		27,628	666,869	1,720,389	1,624,056	4,353,791	1,779,546	2,406,029	12,578,30
					SO ₂				
Full State	MANE-VU	462,551	108,301	25,477	4,793	135,783	2,102	668	739,675
	LADCO	1,463,978	336,334	5,788	4,394	19,144	1,362	1,355	1,832,354
	SESARM	669,831	169,991	7,885	3,626	26,017	1,761	8,016	887,126
Partial	LADCO	36,332	20,930	643	391	5,888	82	5,721	69,988
State	SESARM	409,350	85,352	3,942	1,817	28,477	25,913	21,104	575,953
	CENSARA	1,088,313	324,666	23,796	1,071	38,505	21,060	62,176	1,559,586
	Canada		873.168	36.343	1.380	73.883	,	,	984.775
	US EEZ		,	50.654	/	-,			50.654
	Interntnl			5 775					5.775
SO ₂ Total		4.130.355	1.918.742	160.301	17.473	327.697	52.279	99.040	6.705.886
		, ,	//	/	PM25	- /	- / -	/	
Full State	MANE-VU	17,987	28,669	27,442	27,133	160,501	1,676	27,816	291,225
	LADCO	49.075	53,709	31,191	30.690	156,178	1.518	130.509	452.869
	SESARM	36 920	41 614	20,605	23 652	90 376	2 107	113 554	328,828
Partial	LADCO	2 562	15 190	5 828	2 960	41 547	29	91.658	159 775
State	SESARM	12 623	37 192	10.646	11 93/	78 889	1 3/15	27/ 952	427 581
Juic	CENSARA	12,023	8/ /18	18,040	10 236	88 291	15 977	1 0/8 693	1 341 637
	Canada	45,022	51 551	16 908	8 02/	211 721	13,577	272 474	612 501
			51,554	10,908	0,954	211,721		525,474	15 722
	USEEZ			15,722					15,722
DA Total	interntni.	164 700	212 245	/16	115 520	027 502	22 (52	2 010 656	716
PIVI2.5 TOTAL		164,788	312,345	177,458	115,539	827,502	22,653	2,010,656	3,630,942
Full State		2.022	4.050	270	NH3	14 550	14	165 672	206 584
run state		2,323	4,330	3/0	17 592	10 725	14	103,073	200,584
	LADCO	1 400	7,082	445	17,582	19,725	11	4/8,355	524,691
Dential	SESARIVI	1,498	0,090	282	15,464	5,500	4	348,367	377,805
Partial	LADCO	107	1,240	/6	1,555	3,239	47	201,881	208,146
State	SESARM	1,865	9,667	145	7,602	2,843	2	231,178	253,301
	CENSARA	6,488	22,207	1,218	4,131	14,546	52	1,392,026	1,440,668
	Canada		9,966	250	15,303	6,181		183,853	215,553
	US EEZ			216					216
	Interntnl.								
NH₃ Total		13,772	62,402	3,010	79,732	66,586	129	3,001,334	3,226,964
					CO				
Full State	MANE-VU	41,310	234,702	2,766,259	3,495,020	880,902	40,947	95,551	7,554,690
	LADCO	81,510	740,716	2,536,119	4,277,100	951,341	53,071	166,302	8,806,159
	SESARM	76,219	327,271	1,650,188	3,491,900	471,790	81,710	870,770	6,969,848
	LADCO	7,427	29,263	354,389	407,300	222,691	552	801,858	1,823,481
Partial			150.000	054 226	1 779 900	103 996	28 963	2 003 907	5.259.314
Partial State	SESARM	28,503	159,809	854,230	1,775,500	403,330	20,000	_,000,00,	-,
Partial State	SESARM CENSARA	28,503 199,495	412,002	2,280,730	985,507	434,313	474,162	7,145,277	11,931,487
Partial State	SESARM CENSARA Canada	28,503 199,495	159,809 412,002 1,171.464	2,280,730 1,889.841	985,507	434,313 1,296,264	474,162	7,145,277	11,931,482
Partial State	SESARM CENSARA Canada US EEZ	28,503 199,495	159,809 412,002 1,171,464	854,236 2,280,730 1,889,841 83,618	985,507 2,204,940	434,313 1,296,264	474,162	7,145,277	11,931,48 6,562,509 83,618
Partial State	SESARM CENSARA Canada US EEZ Interntnl.	28,503 199,495	159,809 412,002 1,171,464	854,236 2,280,730 1,889,841 83,618 778	985,507 2,204,940	434,313 1,296,264	474,162	7,145,277	11,931,487 6,562,509 83,618 778

Table 4-5: 2011 base case Gamma emissions	(tons) by pollutant and RPO	for aggregated sectors from S	SMOKE processed emission reports
---	-----------------------------	-------------------------------	----------------------------------

* Note: emissions from the nonroad and nonpoint for states partially in the domain were approximated based on Beta 2 emissions and the ration of Gamma/Beta 2 emissions for states fully in the modeling domain

References

- Abt Associates 2014, SPECIATE Version 4.4 Database Development Documentation, accessed from https://www3.epa.gov/ttn/chief/software/speciate/speciate_version4_4_finalreport.pdf>.
- Adelman, Z 2015, *Emissions Modeling Platform Spatial Surrogate Documentation*, accessed from <ftp://ftp.epa.gov/EmisInventory/2011v6/v2platform/spatial_surrogates/US_SpatialSurrogate_ Documentation_v070115.pdf>.
- Eyth, A and Vukovich, J 2015, 'Technical Support Document (TSD) Preparation of Emissions Inventories for the Version 6.2, 2011 Emissions Modeling Platform', accessed March 18, 2016, from <http://www3.epa.gov/ttn/chief/emch/2011v6/2011v6_2_2017_2025_EmisMod_TSD_aug2015 .pdf>.
- McDill, J and McCusker, S 2018, 'Technical Support Document: Emission Inventory Development for 2011 for the Northeastern U.S. Gamma Version'.
- McDill, J, McCusker, S and Sabo, E 2015, 'Technical Support Document: Emission Inventory Development for 2011, 2018, and 2028 for the Northeastern U.S. Alpha 2 Version', accessed March 7, 2016, from http://marama.org/images/stories/documents/2011-2018-2028_Technical_Support_Docs/TSD%20ALPHA2%20Northeast%20Emission%20Inventory%20for%202011%202018%202028%20DraftFinal%2020151123.pdf>.
- Ozone Transport Commission 2016, *White Paper: Examining the Air Quality Effects of Small EGUs,* Behind the Meter Generators, and Peaking Units during High Electric Demand Days.
- US EPA 2017, 'Technical Support Document (TSD) Additional Updates to Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform for the Year 2023'.

Section 5. 8-hour Ozone/Regional Haze Modeling Using the CMAQ and CAMx Modeling Platforms

Air Quality Modeling Domain

The modeling domain used in this application represented a subset of the EPA continental-modeling domain that covered the entire 48-state region with emphasis on the OTR. The OTC/MANE-VU modeling domain at 12 km horizontal mesh is displayed in Figure 5-1. The 12 km domain used in this analysis includes the eastern US with a 172X172 mesh in the horizontal and 35 vertical layers, the same as WRF setup from surface up to 50 mb. The same domain is used for CMAQ and CAMx Modeling.

Initial/Boundary Conditions/Initial Conditions

The same boundary conditions are used by CMAQ and CAMx modeling, though they differ in format depending on the modeling platform being used.

Alpha, Alpha 2, and Beta/Beta2 Modeling

The boundary conditions for the 12 km grid were developed from a 2.5 x 2.5 degree GEOS-Chem (version 8) global simulation produced by EPA for use in the 2011 modeling platform (Eyth et al. 2015). To address the transport of the pollutants through the boundaries, the GEOS-Chem data were used to develop the initial and boundary condition for the 2011 OTC modeling platform. The CMAQ simulations used a 15-day ramp-up period to wash out the effect of the initial fields.

Gamma Modeling

For Gamma modeling a new set of boundary conditions were created by running the CMAQ model on a national scale. CMAQ modeling for the OTC domain previously relied on a GEOS-Chem boundary condition, which did not perform well, especially near the boundaries. It is important to have accurate modeling of boundary conditions because source apportionment work has shown that boundary conditions are modeled to be a significant, and often the largest, contribution to ozone.

Development of improved boundary conditions began with EPA's 2011 'el' platform and a CAMx run was conducted using the EPA CONUS domain (Figure 5-1) with the 3-D output option. The 3-D results were then trimmed to remove the OTC 12km domain (also Figure 5-1) so that they can function as boundary conditions. The run was completed using CAMx v. 6.3, WRFCAMx v. 4.4, 25 layers, and relied on emissions from EPA's 2011 'el' platform.

Figure 5-1: EPA and OTC 12 km modeling domains

Following the completion of the CAMx run for use as boundary conditions, two runs were completed for the purposes of testing the improvements in boundary conditions. The first of these relied on the GEOS-Chem boundary conditions used in Alpha and Beta modeling and the second of these relied on this new set of boundary condition data developed in CAMx. Both of these runs were completed using CAMx v. 6.3 and WRF-CAMx v. 4.6, with 25 layers and reprocessed 2011 EPA 'el' emissions. The runs were completed for the time period from May 15 to June 30, with the days in May intended as a ramp up period.

To determine the effect of switching boundary conditions, ozone contribution results were compared and on many days contribution by boundary conditions decreased substantially, in particular in the western portion of the domain as seen in Figure 5-2.

Figure 5-2: Difference in ozone contribution between Alpha/Beta (GEOS-Chem) and Gamma (CAMx 3-D) boundary conditions at 4 PM EST during June simulations.

Vertical Layers

Table 5-1 shows the values for each layer in the photochemical modeling platform, as well as in the meteorological model (WRF). This layer set up was used in all modeling runs discussed.

CMAQ/CAMx Layers	WRF Layers	Sigma P	Pressure (mb)	Approximate Height (m AGL)
25	35	0.00	50.00	17,556
	34	0.05	97.50	14,780
24	33	0.10	145.00	12,822
	32	0.15	192.50	11,282
23	31	0.20	240.00	10,002
	30	0.25	287.50	8,901
22	29	0.30	335.00	7,932
	28	0.35	382.50	7,064
21	27	0.40	430.00	6,275
	26	0.45	477.50	5,553
20	25	0.50	525.00	4,885
	24	0.55	572.50	4,264
19	23	0.60	620.00	3,683
18	22	0.65	667.50	3,136
17	21	0.70	715.00	2,619
16	20	0.74	753.00	2,226
15	19	0.77	781.50	1,941
14	18	0.80	810.00	1,665
13	17	0.82	829.00	1,485
12	16	0.84	848.00	1,308
11	15	0.86	867.00	1,134
10	14	0.88	886.00	964
9	13	0.90	905.00	797
	12	0.91	914.50	714
8	11	0.92	924.00	632

Table 5-1: Lavers used by	, tha n	hotochemical	model and	meteorologi	lebom lea	(W/RE)
Table 5-1. Layers used b	y uie p	motochennica	mouel and	meteorologi	Lai mouer	VVRF)

CMAQ/CAMx Layers	WRF Layers	Sigma P	Pressure (mb)	Approximate Height (m AGL)
	10	0.93	933.50	551
7	9	0.94	943.00	470
	8	0.95	952.50	390
6	7	0.96	962.00	311
5	6	0.97	971.50	232
4	5	0.98	981.00	154
	4	0.99	985.75	115
3	3	0.99	990.50	77
2	2	1.00	995.25	38
1	1	1.00	997.63	19

Photochemical Modeling Configurations

Alpha, Alpha 2, and Beta/Beta2 CMAQ Modeling

CMAQ v. 5.0.2 was used for Alpha, Alpha 2 and Beta/Beta 2 modeling. Photochemical modeling was performed with the CCTM software that is part of the CMAQ modeling package. Version 5.0.2 of this modeling software was obtained from the CMAS modeling center (<u>http://www.cmascenter.org</u>). Module options are listed in Table 5-2. It should be noted that the newer version of the gas phase chemical mechanism termed CB06 was not yet available in the CMAQ model at the time of this project.

Table 5-2: Module options used in compiling the CCTM executable

Horizontal advection: yamo V	/ertical advection: wrf	Horizontal diffusion: multiscale
Vertical diffusion: ACM2	Gas phase chemical mechanism: CB05	Biogenic Emission: BEIS
Chemical solver: EBI A	Aerosol module: aero6	

The following files are saved as running CMAQ:

- Layer 1 hourly-average concentration file (ACONC) which contains whole 154 species
- Dry deposition file (DRYDEP)
- Wet deposition file (WETDEP1)
- Aerosol/visibility file

Gamma and Gamma 2 CMAQ Modeling

CMAQ v. 5.2 was used in the Gamma and Gamma 2 Modeling. Photochemical modeling was performed with the CCTM software that is part of the CMAQ modeling package. Version 5.2.1 of this modeling software was obtained from the CMAS modeling center (<u>http://www.cmascenter.org</u>). Module options are listed in Table 5-3. There was no difference in the files saved for modeling from previous modeling.

-		-	
Horizontal advection: yamo	Vertical advection:	wrf Horizontal diffusion: m	nultiscale
Vertical diffusion: ACM2	Gas phase chemica	I mechanism: CB06r3 Biogenic Emission: BEI	S3 inline
Chemical solver: EBI	Aerosol module: ae	ero6 Deposition velocity: m	3dry

CAMx-APCA Modeling

Source apportionment modeling for future year 2023 used CAMx v. 6.40. The modeling software was obtained from Ramboll-Environ (www.camx.com). For consistency with the modeling conducted by EPA, the APCA option was applied instead of OSAT. WRFCAMx v. 4.6 was used with 35 layers. In

addition, all emissions (surface and elevated) were converted to point sources with kcell override except sea salts, which were supplied as 2-d surface emissions. Other options used in the modeling are listed in Table 5-4 and the full script is available upon request.

Table 5-4: Runtime options used in the MPI script

ACM2: false	Gas phase chemical mechanism: CB06r4	Biogenic Emission: BEIS
Chemical solver: EBI	Advection solver: PPM	Aerosol module: aero6
Probing tool: SA	Dry deposition model: ZHANG03	

References

Eyth, A and Vukovich, J 2015, 'Technical Support Document (TSD) Preparation of Emissions Inventories for the Version 6.2, 2011 Emissions Modeling Platform', accessed March 18, 2016, from <http://www3.epa.gov/ttn/chief/emch/2011v6/2011v6_2_2017_2025_EmisMod_TSD_aug2015 .pdf>.

Section 6. Model Performance and Assessment of 8-hour Ozone/Regional Haze Modeling

Air Quality Model Evaluation and Assessment

One of the tasks required as part of demonstrating attainment for the 8-hr ozone NAAQS is the evaluation and assessment of the air quality modeling system used to predict future air quality over the region of interest (EPA, 2014). As part of the attainment demonstration, the SMOKE/CMAQ and SMOKE/CAMx modeling systems were applied to simulate the pollutant concentration fields for the base year 2011 emissions with the corresponding meteorological information. The modeling databases for meteorology using WRF, the emissions using SMOKE, and application of CMAQ or CAMx provide simulated pollutant fields that are compared to measurements to establish credibility of the modeling system. In the following section a comparison between the measured and predicted concentrations is performed and the results presented, demonstrating the overall utility of the modeling system in this application.

The results presented here should serve as an illustration of the evaluation and assessment performed on both the base 2011 CMAQ and CAMx simulations. Additional information can be made available by request from the New York State Department of Environmental Conservation.

Simulations

Base case CMAQ simulations were run using each of the 2011 base case inventories (Alpha, Alpha 2, Beta, and Gamma) and base case CAMx simulation was only run using Gamma. Meteorology, boundary conditions, etc. were all held consistent in the base case simulations. The chemistry mechanism was held consistent between the Alpha and Beta platforms, but was upgraded for the Gamma simulations.

Summary of Measured Data

The ambient air quality data for both gaseous and aerosol species for the simulation period were obtained from EPA AQS for ozone, AQS for $PM_{2.5}$ mass, CSN and IMPROVE for $PM_{2.5}$ speciation, and DISCOVER-AQ. Measured data from all sites within the modeling domain are included here. The model-based data were obtained at the grid-cell corresponding to the monitor location and no interpolation was performed.

Ozone

Hourly ozone is measured at a large number of State, Local, and National Air Monitoring Stations (SLAMS/NAMS) across the US on a routine basis, and the data from 226 OTR and 427 non-OTR sites were extracted from the AQS database (<u>https://aqs.epa.gov/api</u>).

Fine Particulate Matter (PM_{2.5})

Federal Reference Method (FRM) PM_{2.5} mass data collected routinely at SLAMS/NAMS sites across the US and the data from 745 sites across the modeling domain were extracted from AQS.

Fine Particulate Speciation

The 24-hour average $PM_{2.5}$ and fine particulate speciation (sulfate (SO₄), nitrate (NO₃), elemental carbon (EC), organic carbon/organic mass (OC/OM), and soil/crustal matter) from Class I areas across the US

collected every 3rd day were obtained from the IMPROVE web site

(<u>http://vista.cira.colostate.edu/IMPROVE</u>). Additionally, CSN speciated data was downloaded from the AQS system (<u>https://www3.epa.gov/ttnamti1/speciepg.html</u>). Data from 58 IMPROVE sites and 127 CSN sites in the modeling domain were used in this analysis.

DISCOVER-AQ

Two research airplanes (a NASA P-3B and a UC-12) flew 14 days, sampling in coordination with ground sites, monitoring air quality in the Baltimore-Washington corridor in 2011. The NASA P-3B spiraled over six ground stations in Maryland and the UC-12 used a LiDAR to observe "profiles" of particulate pollution in the atmosphere. This data resource was predominantly used to inform a qualitative assessment of vertical ozone profiles.

Evaluation of CMAQ predictions

The following sections provide model evaluation information for the above referenced pollutants over the 12-km modeling domain. Details on the formulas used in this section can be seen in Appendix A.

Daily Maximum 8-hour Ozone Concentration

Model evaluation statistics, based on daily maximum 8-hour average ozone levels on days having: (1) at least 10 valid observations, and (2) an observed daily maximum ozone concentration of at least 60 ppb, are presented here for all sites across the modeling domain. The data covered the period from April 15 through October 30. Modeling results were computed using the Alpha2 platform. There are 226 OTR and 427 non-OTR SLAMS/NAMS sites. The use of the 60 ppb threshold focuses on model performance evaluation on the highest ozone days.

Figure 6-1 and Figure 6-2 display daily averages of observed and predicted daily maximum 8-hour ozone concentrations averaged across all SLAMS/NAMS sites in the OTR and outside of the OTR, respectively. These averages were computed for each day and considered all sites, not just ones that met the threshold. The dashed black line denotes 1:1, colored lines denote linear regression lines, and the green line denotes observed daily maximum ozone ≥60 ppb.

The overall tendency of CMAQ is to over-predict daily maximum ozone – 63% of CMAQ values at OTR sites are higher than observed (Figure 6-1); 60% of CMAQ values at non-OTR sites are higher than observed (Figure 6-1). However, at observed daily maximum ozone concentrations >60 ppb, CMAQ tends to under-predict ozone – on such days 68% of CMAQ values at OTR sites are lower than observed, and 77% of CMAQ values at non-OTR sites are lower than observed. The under-prediction in the OTR is less when solely looking at the 1st high maximum and the 4th high maximum (Figure 6-3). It is also less in the region outside of OTR for the 1st high maximum and the 4th high maximum (Figure 6-3).

Figure 6-1: Comparison of daily maximum 8-hour ozone concentrations at OTR sites

Figure 6-2: Comparison of daily maximum 8-hour ozone concentrations at non-OTR sites

Table 6-1: Correlation coefficients for 1st and 4th highest maximum 8-hour ozone concentrations in 2011 base case modeling

	1 ^{°°} highest maximum	4 ^{III} highest maximum
OTR	0.68	0.78
Outside-OTR	0.31	0.38

Figure 6-3: Comparison of 1st highest maximum (left) and 4th highest maximum (right) 8-hour ozone concentrations at OTR sites

Figure 6-4: Comparison of 1st highest maximum (left) and 4th highest maximum (right) 8-hour ozone concentrations at non-OTR sites

CMAQ captured the observed temporal variation well (Figure 6-5). CMAQ captured the observed temporal variation well with both Alpha 2 and Beta emissions with the Beta emissions yielding comparable 8-hour ozone results to Alpha2 emissions though in a few cases Beta results were slightly higher (Figure 6-5 and Figure 6-6).

Figure 6-5: Observed versus predicted 2011 ozone concentration (ppb; mean ± 1 standard deviation) using Alpha 2 Inventory in the OTR where daily max was greater than 40 ppb

Figure 6-6: Observed versus predicted 2011 ozone concentration (ppb; mean ± 1 standard deviation) using Beta Inventory in the OTR where daily max was greater than 40 ppb

Geographically, the MFE is higher in New England than in the Mid-Atlantic OTR and much higher outside of the region, in particular in LADCO (Figure 6-7). The Beta emissions showed less MFE compared to Alpha2 emissions, especially within the inner-OTR region (Figure 6-8). MFB are small and close to zero bias in the northeast region while in the LADCO region MFB is more negative indicating CMAQ's underprediction which may be caused by the boundary conditions (Figure 6-9). The Beta emissions also showed improvement in correcting the prediction bias, especially in the inner-OTR region (Figure 6-10). There are several monitors on the Atlantic coast, in particular along the Long Island Sound, that have a positive MFB, and the general under-prediction in the OTR is more prominent in southern New England. Outside of the region MFB shows the most under-prediction in LADCO and CENSARA states. MAGE is most prominent along the I-95 corridor and along Lake Erie, though the highest MAGE is seen at Mt Washington in New Hampshire (Figure 6-11). Similar to MFE, the Beta emissions also indicated the improvement in reducing error by CMAQ predictions (Figure 6-12). MAGE is also higher outside of the OTR, in particular in the LADCO and CENSARA states. One potential reason for higher MFE and MAGE in the LADCO and CENSARA regions may be boundary conditions.

Figure 6-7: MFE in daily max 8-hr ozone Alpha 2, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)

Figure 6-8: MFE in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)

Note: When looking at MFE in the figures above, cooler colors (e.g. gray, blue, green) indicate better model performance.

Figure 6-9: MFB in daily max 8-hr ozone Alpha 2, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)

Figure 6-10: MFB in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)

Note: When looking at MFB in the figures above, warm colors (yellow and orange) indicate better model performance.

Figure 6-11: MAGE in daily max 8-hr ozone Alpha 2, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites) Figure 6-12: MAGE in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold (183 of 226 OTR sites; 372 of 427 non-OTR-sites)

Note: When looking at MAGE in the figures above, cooler colors (e.g. gray, blue, green) indicate better model performance.

Gamma Platform Improvements

For the Gamma modeling platform several improvements were made and evaluated. Firstly the chemistry mechanism was upgraded to CB6 from CB5. Additionally, several inventory sectors were upgraded including onroad mobile (increased penetration of e-85 fuel and speciation updates), nonpoint, oil & gas, portable fuel containers, and agricultural fire sectors. Finally, improvements were made to the way in which marine emissions were modeled.

When comparing the MFE between Beta (Figure 6-13) and Gamma (Figure 6-14) one can see a decrease in error, in particular along I-95 corridor monitors in the OTR. Monitors along the I-95 corridor see MFB that was negative in Beta (Figure 6-15) getting closer to 0 in Gamma (Figure 6-16). Finally there are decreases in MAGE seen in Gamma (Figure 6-18) from what was modeled in Beta (Figure 6-17). Overall the Gamma modeling platform would appear to be an improvement over the Beta platform in key locations in the OTR.

Figure 6-13: MFE in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold Figure 6-14: MFE in daily max 8-hr ozone Gamma, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold

Note: When looking at MFE in the figures above, cooler colors (gray, blue, green) indicate better model performance.

Figure 6-15: MFB in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold Figure 6-16: MFB in daily max 8-hr ozone Gamma, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold

Note: When looking at MFB in the figures above, warm colors (yellow and orange) indicate better model performance.

Figure 6-17: MAGE in daily max 8-hr ozone Beta, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold

Figure 6-18: MAGE in daily max 8-hr ozone Gamma, 60 ppb threshold, Apr 15-Oct 30; only monitors with 10 days greater than 60 ppb threshold

Note: When looking at MAGE in the figures above, cooler colors (gray, blue, green) indicate better model performance.

In Figure 6-19 one can see how MFB, which tended negative in the Beta platform, improved overall compared to Gamma platform. Figure 6-20 shows a similar comparison or MFE and one can see an overall reduction in MFE moving from the Beta to the Gamma platform.

Figure 6-19: MFB comparison between Gamma (y-axis) and Beta (x-axis)

Figure 6-20: MFE: comparison between Gamma (y-axis) and Beta (x-axis)

The data presented in Table 6-2 summarizes the improvements seen going from Beta to Gamma. Every category saw an increase in the number of monitors meeting the performance statistics, both inside and outside of the OTR.

Table 6-2: Summary statistics for MFE, MFB, and MAGE from the Beta and Gamma modeling platforms

	MFE ≤ 15%	MFB ≤ 15%	MAGE ≤ 10 ppb
Beta, all sites (n=553)	n=346	n=441	n=371
Gamma, all sites (n=553)	n=395	n=483	n=407
Beta, OTR sites (n=183)	n=156	n=176	n=161
Gamma, OTR sites (n=183)	n=171	n=178	n=169

Figure 6-21: Difference in Ozone Seasonal 8-Hour Maximum (Gamma – Beta)

To get an idea of the changes in the baseline results that impact RRF calculations you can examine Figure. There are increases in ozone levels in some grid cells near the Chesapeake and Delaware Bays, decreases in ozone levels in the Atlantic, and increase in ozone levels north of and over Lake Erie.

397

Finally, we can look at the improvements in modeled diurnal patterns. Five key monitors with typically high ozone values were evaluated (Susan Wagner (Figure 6-22) and Babylon (Figure 6-23) in New York, Greenwich (Figure 6-24) and Westport (Figure 6-25) in Connecticut, and Edgewood (Figure 6-26) in Maryland). The Gamma platform continues to follow the observed diurnal pattern at these five monitors with improvements seen on some days and less accurate predictions than Beta on others. Overall the Gamma platform appears to replicate the diurnal patterns equally as well as the Beta platform did at the five selected monitors.

Figure 6-22: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed at Susan Wagner, NY (360850067)

Figure 6-24: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed at Greenwich, CT (090010017)

Figure 6-26: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed at Edgewood, MD (240251001)

Figure 6-23: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed at Babylon, NY (361030002)

Figure 6-25: Comparison of hourly ozone modeled with the Gamma and Beta platforms to observed at Westport, CT (090190003)

Evaluation of Ozone Aloft

On June 8-9 and July 21-23, 2011 ozone sondes were launched at Edgewood, MD (Penn State University), Beltsville, MD (Howard University), and Egbert, ON. UMD flew aircraft spirals over Churchville, MD (0W3), Cumberland, MD (CBE), Easton, MD (ESN), Frederick, MD (FDK), Massey, MD (MD1), Luray, VA (W45), and Winchester, VA (OKV). The NASA P3 from the DISCOVER-AQ program flew spirals over Beltsville, MD, Padonia, MD, Fairhill, MD, Aldino, MD, Edgewood, MD, and Essex, MD.

Averages and standard deviations for the measurements were calculated for each elevation that corresponded to the height of a layer used in CMAQ modeled runs. Grid cells that corresponded temporally and geographically to the measurements from the location of the ozone measurement (e.g., sonde launch site) from DISCOVER-AQ were used as the prediction with which the observed data would be compared.

Predictions above 3 km were generally accurate when compared to the morning profile, but underpredicted, especially above 8 km (Figure 6-27). Between 0.5 km and 3 km CMAQ under-predicted observed concentrations by around 5 ppb during both the morning and evening hours. We found that CMAQ predictions were fairly accurate below approximately 0.5 km. The results are similar with CMAQ run with both inline point sources (Run 1) and SMOKE processed point sources (Run 2).

Figure 6-28: Observed ozone concentration (ppb) layer average

Figure 6-27: Observed ozone concentration (ppb) layer average and standard deviation compared to CMAQ layers up to 10 km

Evaluation of Fine Particulate Matter

Composite daily average predicted and observed concentrations of $PM_{2.5}$ FRM mass were compared to determine the validity of the modeling results prior to evaluating individual species needed for haze model validation. Our model performance goals of MFB $\leq \pm 30\%$ and MFE $\leq 50\%$ as well as model

performance criteria of MFB $\leq \pm 60\%$ and MFE $\leq 75\%$ were set by the OTC modeling committee. These performance goals and criteria were also used by other RPOs when evaluating PM_{2.5} model performance (Brewer et al. 2007). CMAQ met the MFB $\pm 30\%$ goal on 63% of days and the MFB $\pm 60\%$ performance criteria nearly every day. CMAQ met the MFE 50% goal on 82% of days and the MFE 75% performance criteria every day as seen in Table 6-3. MAGE was also found to be acceptably low on 64% of days.

Table 6-3: Summary statistics for predicted PM _{2.5} FRM mass			
	ALL DAYS (N=365)	1-IN-3-DAY (N=121)	
MFB ≤ ±30%	230 (63.0%)	79 (65.3%)	
	200 (00 00()	424 (4000()	

$MFB \le \pm 60\%$	360 (98.6%)	121 (100%)
MFE ≤ 50%	300 (82.2%)	98 (81.1%)
MFE ≤ 75%	365 (100%)	121 (100%)
MAGE \leq 5 mg/m ³	235 (64.4%)	80 (66.1%)

Annually, PM_{2.5} is over predicted, with the greatest over-prediction occurring during the winter months and the summer months leaning towards a slight under-prediction (Figure 6-29).

Figure 6-29: Comparison of daily observed and predicted PM_{2.5} FRM mass, annual and by season with 1:1 (dashed), 1:1.5 (green) and 1:2 (red) lines for Winter (D/J/F), Spring (M/A/M), Summer (J/J/A), Fall (S/O/N), and Annually.

When looking temporally, one finds the greatest over-prediction during the winter months and slight under-prediction during the summer (Figure 6-30, Figure 6-31) and the result holds for those monitors on the 1 in 3 day schedule. MFE is high throughout the year with the greatest peaks in the summer time

(Figure 6-32, Figure 6-33). MFB is positive in the winter time, which is indicative of under-prediction and negative during the summer time, which is indicative of over-prediction (Figure 6-34, Figure 6-35). MAGE is greatest during the winter and summer (Figure 6-36, Figure 6-37).

Figure 6-31: Observed and predicted PM_{2.5} FRM mass, 1-in-3 day schedule

Figure 6-32: MFE PM_{2.5} FRM mass, all days

As a first step in geographic evaluation we looked at the differences between observed (Figure 6-38) and predicted values (Figure 6-39) and one can see that some areas of MANE-VU are achieving different results annually. The greatest MFE for PM_{2.5} in MANE-VU occurs in northern New England and decreases towards the southern portion of MANE-VU, though there are also some higher MFE values along the coast (Figure 6-40). The same areas in New England are biased towards over-prediction as well, with under-prediction occurring in more populated portions of MANE-VU (Figure 6-41). MAGE remains fairly consistent geographically (Figure 6-42).

Figure 6-38: Observed annual average PM_{2.5} FRM mass, 2011 (only monitors with ≥10 days of data are shown)

Figure 6-39: Predicted annual average PM_{2.5} FRM mass, 2011 (only monitors with ≥10 days of data are shown)

Figure 6-40: MFE in PM_{2.5} FRM mass, 2011 (only monitors with ≥10 days of data are shown)

Note: When looking at MFE in the figure above, blue and green colors indicate better model performance.

Figure 6-41: MFB in PM2.5 FRM mass, 2011 (only monitors with ≥10 days of data are shown)

Note: When looking at MFB in the figure above, yellow and orange colors indicate better model performance.

Figure 6-42: MAGE in PM_{2.5} FRM mass, 2011 (only monitors with ≥10 days of data are shown)

Note: When looking at MAGE in the figure above, blue and green colors indicate better model performance.

Evaluation of Visibility

In this section we evaluate the model performance with respect to visibility, in particular of the $PM_{2.5}$ species used in the IMPROVE algorithm to estimate visibility impairment. Data from 58 IMPROVE sites and 127 CSN sites in the modeling domain were used in this analysis and the data cover the entire 2011 year.

Soil/crustal matter is assumed to consist of oxides of Aluminum (AI), Calcium (CA), Iron (Fe), Silicon (Si), and Titanium (Ti). The IMPROVE OC blanks are assumed to equal zero. Since CMAQ was employed, we used 2.5 m "sharp cutoff" variables as opposed to the sum of I+J modes.

CSN reports EC & OC by TOT and TOR, IMPROVE only by TOR; for this analysis, TOR data from CSN and IMPROVE were combined and CSN TOT data were considered separately. IMPROVE reports blank-corrected OC and CSN does not, so for this analysis, annual average site-specific blank values (generally about 0.2-0.3 μ g/m³) were subtracted from the CSN data.

The equations used to calculate RCFM and light extinction are as follows:

Equation 6-1: Calculation of RCFM

 $\begin{aligned} RCFM &= 1.37Mass_{SO4} + 1.29Mass_{NO3} + Mass_{EC} + 1.8Mass_{OC} + Mass_{Soil} + 1.8Mass_{Cl} \\ \text{Equation 6-2: Calculation of extinction from Ammonium Sulfate} \\ Ext_{NH4SO4} &= 3f(RH) * 1.37Mass_{SO4} (assume SO4 fully neutralized by NH4) \\ \text{Equation 6-3: Calculation of extinction from Ammonium Nitrate} \\ Ext_{NH4NO3} &= 3f(RH) * 1.2Mass_{NO3} (assume NO3 fully neutralized by NH4) \\ \text{Equation 6-4: Calculation of extinction from Elemental Carbon} \\ Ext_{LAC} &= 10Mass_{EC} \end{aligned}$

Equation 6-5: Calculation of extinction from POM $Ext_{POM} = 4 * 1.8Mass_{OC}$ (assume $Mass_{POM} = 1.8 Mass_{OC}$) Equation 6-6: Calculation of extinction from Soil $Ext_{SOIL} = Mass_{SOIL}$ Equation 6-7: Calculation of extinction from Sea Salt $Ext_{Salt} = 1.7f(RH) * 1.8Mass_{Cl}$ Equation 6-8: Calculation of extinction from Coarse PM $Ext_{PM10} = 0.6Mass_{PM10}$

We found that sulfate was under-predicted consistently throughout the year by $1 \mu g/m^3$ with slightly higher under-prediction during summer (Figure 6-43). Nitrate was over-predicted by small margins during the winter months and very slightly under-predicted during summer (Figure 6-44). Ammonium was under-predicted throughout most of the year, although there was over-prediction during fall (Figure 6-45). Elemental carbon was over-predicted at all times of the year compared to TOR observations, though the over-prediction was less during the summer than other times of year (Figure 6-46). Organic carbon was over-predicted in the winter and under predicted in the summer but compared well during the shoulder months compared to TOR observations (Figure 6-47). Soil was over-predicted throughout the year with the least amount of over-prediction during the spring (Figure 6-48). Elemental carbon was over-predicted even more when compared to TOT observations than TOR (Figure 6-49). Organic carbon was over-predicted less in the winter and under-predicted more in the summer compared to TOT observations than TOR (Figure 6-50). The pattern of over and under-prediction more closely resembles that of organic carbon since the magnitude of organic carbon is much higher than that of elemental carbon (Figure 6-51).

Figure 6-43: SO₄ concentration (observed, CSN and IMPROVE, vs. predicted)

Figure 6-44: NO₃ concentration (observed, CSN and IMPROVE, vs. predicted)

Figure 6-46: EC (TOR) concentration (observed, CSN and IMPROVE, vs. predicted)

Figure 6-47: OC (TOR) concentration (observed, CSN and IMPROVE, vs. predicted)

Figure 6-49: EC (TOR & TOT) concentration (observed, CSN only, vs. predicted)

Figure 6-50: OC (TOR & TOT) concentration (observed, CSN only, vs. predicted)

Geographically MFB and MFE for SO₄ had the highest magnitude in northern New England (Figure 6-52 and Figure 6-53, respectively). MFB for NO₃ was lowest in magnitude in northern New England and biased quite low along the I-95 corridor, whereas MFE for NO₃ was quite high throughout the region (Figure 6-54 and Figure 6-55, respectively). MFB for NH₄ often tended to not be too high or low throughout the region and MFE was higher in New England than in the Mid-Atlantic (Figure 6-56 and Figure 6-57, respectively). MFB was high throughout the region, with the highest levels along the inner corridor and MFE was higher in New England than in the Mid-Atlantic (Figure 6-58 and Figure 6-59, respectively). MFB was high throughout the region and Sometimes quite low at more rural sites, and MFE was high throughout the MANE-VU region (Figure 6-60 and Figure 6-61, respectively). MFB and MFE were quite high for soil throughout MANE-VU (Figure 6-62 and Figure 6-63, respectively).

Figure 6-52: MFB SO₄, 2011 (only monitors with \geq 10 days of data are shown)

Figure 6-54: MFB NO₃, 2011 (only monitors with \geq 10 days of data are shown)

Figure 6-56: MFB NH₄, 2011 (only monitors with \geq 10 days of data are shown)

Figure 6-53: MFE SO₄, 2011 (only monitors with \geq 10 days of data are shown)

Figure 6-55: MFE NO₃, 2011 (only monitors with \geq 10 days of data are shown)

Figure 6-57: MFE NH₄, 2011 (only monitors with ≥10 days of data are shown)

Figure 6-58: MFB EC, 2011 (only monitors with ≥10 days of data are shown)

Figure 6-60: MFB OC, 2011 (only monitors with ≥10 days of data are shown)

Figure 6-62: MFB Soil, 2011 (only monitors with ≥10 days of data are shown)

Figure 6-61: MFE OC, 2011 (only monitors with ≥10 days of data are shown)

Figure 6-63: MFE Soil, 2011 (only monitors with ≥10 days of data are shown)

Note: When looking at MFB in the figures above, yellow and orange colors indicate better model performance. When looking at MFE, blue and green colors indicate better model performance.

Figure 6-64 shows the comparison of observed versus prediction extinction due to ammonium sulfate. One can see a trend toward under-prediction of extinction by CMAQ throughout the year with the starkest under-prediction occurring during the summer months. The visual observation is backed up by the data in Table 6-4 that shows a negative bias in all seasons and the highest MAGE during the summer months.

Figure 6-65 shows the comparison of observed versus predicted extinction due to ammonium nitrate. One can see a trend toward over-prediction of extinction by CMAQ during the winter months and under-prediction during the summer months. The visual observation is backed up by the data in Table 6-5 that shows high MFE and a strong negative bias in the summer, though this is partially due to such low values occurring during summer months. MFE during the winter is larger than it was for ammonium sulfate, though MFB is of the same relative magnitude.

Figure 6-66 shows the comparison of observed versus prediction extinction due to light absorbing carbon. Overall predictions correspond well with the observations, with a tendency towards under-prediction, excepting during the winter months.

Figure 6-67 shows the comparison between observed versus predicted extinction due to organic matter. The patterns of MFB and MFE follow the pattern observed for ammonium nitrate.

Figure 6-68 shows the comparison between observed versus predicted extinction due to soil, which is overall predicted quite well.

Figure 6-69 shows the comparison between observed versus predicted extinction due to salt, which is overall predicted quite well, but due to its small impact on light extinction, sees high MFB and MFE due to just small variations in the predictions.

Figure 6-70 shows the comparison between observed versus predicted extinction due to coarse mass, which is consistently under-predicted, but also has such a smaller impact on extinction and results in little increase in MAGE.

Figure 6-71 shows the comparison between observed versus predicted extinction when the impact of all of the aerosols is totaled. Overall there is a tendency towards under-predictions, but there are a few data points that are greatly skewed towards over-prediction. The winter months are predicted quite well with an almost 0 MFB, a moderate MFE, and MAGE of 23. Summer months tend to be the most under-predicted with MFE and MAGE that is slightly higher than the winter months. This is supported by the data in Table 6-4 supports these visual observations.

Figure 6-64: Comparison of observed vs. predicted extinction due to NH_4SO_4 daily (top) and averaged monthly (bottom) in MANE-VU

Figure 6-65: Comparison of observed vs. predicted extinction due to NH₄NO₃ daily (top) and averaged monthly (bottom) in MANE-VU

Figure 6-66: Comparison of observed vs. predicted extinction due to LAC daily (top) and averaged monthly (bottom) in MANE-VU

Figure 6-67: Comparison of observed vs. predicted extinction due to POM daily (top) and averaged monthly (bottom) in MANE-VU

6-55

Figure 6-68: Comparison of observed vs. predicted extinction due to Soil daily (top) and averaged monthly (bottom) in MANE-VU

Figure 6-70: Comparison of observed vs. predicted extinction due to CM daily (top) and averaged monthly (bottom) in MANE-VU

Figure 6-69: Comparison of observed vs. predicted extinction due to Sea Salt daily (top) and averaged monthly (bottom) in MANE-VU

Figure 6-71: Comparison of observed vs. predicted extinction due to total aerosols daily (top) and averaged monthly (bottom) in MANE-VU

POLLUTANT	METRIC	DJF	MAM	JJA	SON	POLLUTANT	METRIC	DJF	MAM	JJA	SON
NH ₄ SO ₄	MFB, %	-61.9	-67	-58.9	-48.3	NH_4NO_3	MFB, %	34	-40.9	-111.7	-41.1
	MFE, %	69.4	75.8	68.4	63.2		MFE, %	84.4	101.7	128.7	100.1
	MAGE, Mm ⁻¹	8.52	10.46	16.31	8.45		MAGE, Mm ⁻¹	11.72	4.87	1.8	4.01
LAC	MFB, %	31.1	-13.1	-43.8	-8.4	POM	MFB, %	27.9	-42.3	-107.2	-51.8
	MFE, %	59.8	62.7	55.7	53.3		MFE, %	67.5	82.2	111.6	75.7
	MAGE, Mm ⁻¹	2.38	1.37	1.4	1.78		MAGE, Mm ⁻¹	8.84	5.76	9.55	6.06
Soil	MFB, %	64.8	-18.2	30.1	60.1	Salt	MFB, %	-74.9	-127.5	-156.9	-117.5
	MFE, %	98.7	78.6	75.7	86.5		MFE, %	119.2	136.5	159.9	133.2
	MAGE, Mm ⁻¹	0.44	0.3	0.47	0.44		MAGE, Mm ⁻¹	0.57	0.53	0.34	0.57
CM	MFB, %	-106.9	-124.3	-112.5	-107.9	All Aerosols	MFB, %	-2.1	-48.8	-71.4	-37.3
	MFE, %	114.9	126.2	118.9	113.6		MFE, %	49.7	64.3	74.2	54.8
	MAGE, Mm ⁻¹	1.35	2.11	2.95	2.1		MAGE, Mm ⁻¹	22.94	19.11	28.81	16.81

Table 6-4: Seasonal summary statistics (MFB, MFE, MAGE) for light extinction due to aerosol species for IMPROVE monitors in modeling domain

When the various species are reconstituted as shown in Equation 6-1 over-prediction by about 3 μ g/m³ in the winter months, under-prediction by about 2 μ g/m³ in the summer months, and fairly close results during the shoulder seasons (Figure 6-72) are seen.

Figure 6-73 shows the annual comparisons of observed versus model predicted RFCM, light extinction (Mm⁻¹), and visibility impairment (deciviews). At most monitors RFCM is under-predicted slightly, though two monitors appear to be quite over-predicted. Light extinction follows the same pattern with most monitors being somewhat under-predicted and two outliers being quite over-predicted. Visibility impairment still shows under-prediction overall, but the transformation to the logarithmic scale for light extinction reduces the appearance of over-prediction for the two outlying monitors.

Figure 6-73: Observed vs. predicted RFCM, light extinction (Mm⁻¹), and visibility impairment (deciviews) at domain IMPROVE monitors

Evaluation of CAMx predictions

The following sections provide model evaluation information for ozone pollution solely over the 12-km modeling domain. Data from May 25 through August 30, 2011 was compared. Details on the formulas used in this section can be seen in Appendix A.

Beta Platform

Firstly comparisons of CMAQ and CAMx were conducted using the MARAMA beta emissions platform. Three runs were completed, one using CMAQ v. 5.0.2 and CB05 chemistry and two using CAMX v. 6.40, one with CB05 and one with CB06r2 chemistry. The full list of run specs is in Table 6-5.

	CMAQ v. 5.0.2	CAMx v. 6.40
Met Inputs	MCIP	wrfcamx
Emissions	SMOKE (CB5)	cmaq2camx (CB5 & CB6r2)
IC/BC	Geos-Chem	cmaq2camx
PBL Scheme	ACM2	YSU
Kz fix	KzMIN	kvpatch
Chemistry	CB5	CB5/CB6r2
Run Time	45 min/day	10/12 min/day

Table 6-5: Run specifications for CMAQ vs CAMx benchmarking runs

Evaluation between the model runs focused on the differences that arose between using the two models while maintaining a consistent chemistry and on high ozone days. CB05 was chosen for this purpose given that it was the up to date version of the chemistry module available for CMAQ at the time. Figure 6-74 (CMAQ) and Figure 6-75 (CAMx) compare the results from a high ozone day. Although there are obviously some differences between the two model runs, the same geographic distribution of high levels of ozone are captured between the two model runs. Figure 6-76 (CMAQ) and Figure 6-77

(CAMx) show the same type of comparison on a typical ozone day and there again appears to be no major differences between the two model runs.

Figure 6-74: Daily Max 8-hour Ozone CMAQ v5.02 CB05 MARAMA Beta 2 Emissions (June 8, 2011)

Figure 6-75: Daily Max 8-hour Ozone CAMx b6.40 CB05 MARAMA Beta 2 Emissions (June 8, 2011)

Figure 6-76: Daily Max 8-hour Ozone CMAQ v5.02 CB05 MARAMA Beta 2 Emissions (July 11, 2011)

Looking next at several summary statistics one finds general agreement in values on NMB (Figure 6-78), and NME (Figure 6-79) between CMAQ and CAMx, with a few outliers being predicted much higher in CMAQ. However, R values (Figure 6-80) were found to be consistently lower when using the CAMx model than when using CMAQ. The charts also show the comparison between CMAQ when using CB05 and CAMx when using CB06r2. When looking at these results NMB and NME appear to be higher for CAMx compared to CMAQ. R values appear to differ in the same fashion as they did when comparing CAMx with CB05 chemistry.

Figure 6-78: NMB for CMAQ v5.02 CB05 (x-axis) vs CAMx v6.40 CB05 & CB6r2 (y-axis)

Figure 6-79: NME for CMAQ v5.02 CB05 (x-axis) vs CAMx v6.40 CB05 & CB6r2 (y-axis)

Figure 6-80: : R for CMAQ v5.02 CB05 (x-axis) vs CAMx v6.40 CB05 & CB6r2 (y-axis)

When examining monitors of note in the OTR (Table 6-6) one finds general agreement between the two model results, with a notable exception being Fort Griswold Park, CT (090110124). Overall many of the key monitors were predicted better in CAMx than in CMAQ, which at first glance seems incorrect given that overall CMAQ predictions fared better, but these monitors would be the outliers seen in Figure 6-78 though Figure 6-80.

AQS CODE	SITE	CMAQ			CAMX			
		NMB (%)	NME (%)	R	NMB (%)	NME (%)	R	
090010017	Greenwich Point Park-Greenwich	3.10	23.62	0.55	-3.56	17.77	0.72	
090013007	Lighthouse-Stratford	10.60	17.17	0.80	3.91	13.44	0.84	
090019003	Sherwood Island State Park-Westport	4.89	16.38	0.74	5.09	13.85	0.83	
090011123	Western Conn State UnivDanbury	6.98	16.78	0.78	7.27	14.08	0.87	
090110124	Fort Griswold Park-Groton	28.78	31.72	0.79	14.34	18.95	0.84	
240053001	Essex	7.04	16.11	0.75	6.43	15.02	0.79	
240090011	Calvert	14.14	19.71	0.74	17.77	20.56	0.80	
240150003	Fair Hill Natural Resource Management Area	4.48	13.05	0.75	4.08	12.63	0.81	
240251001	Edgewood	-1.79	13.48	0.71	-1.21	12.13	0.77	
340150002	Clarksboro	1.94	13.57	0.78	-2.06	12.94	0.83	
360810124	Queens College 2	8.81	17.30	0.74	-4.12	15.46	0.76	
360850067	Susan Wagner HS	5.68	17.15	0.73	-3.37	14.72	0.84	
361030002	Babylon	5.19	15.54	0.78	0.42	12.69	0.83	

Table 6-6: CMAQ vs CAMx model performance statistics for key monitors in the OTR using CB05 chemistry

Finally, hourly 8-hour ozone results on the ten days that are factored into calculations were compared for five selected monitors (Greenwich Point and Sherwood Island in CT, Edgewood in MD, and Babylon and Queens College in NY). The results are shown in Figure 6-81 though Figure 6-90 with the figure on the left showing observations compared to CMAQ model runs and the figure on the right CAMx for each of the five monitors.

In general it appears that both models consistently predict the observations and on the days that they do not, they generally over-predict ozone (which is typically two or three of the ten days). The CMAQ predictions for Greenwich Point are the main exception to this generalization with multiple days being under-predicted.

Figure 6-81: Hourly observed vs. CMAQ CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Greenwich Point (090010017)

Figure 6-83: Hourly observed vs. CMAQ CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Sherwood Island (090019003)

Figure 6-82: Hourly observed vs. CAMx CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Greenwich Point (090010017)

Figure 6-84: Hourly observed vs. CAMx CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Sherwood Island (090019003)

Figure 6-85: Hourly observed vs. CMAQ CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Edgewood (240251001)

Figure 6-87: Hourly observed vs. CMAQ CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Babylon (360810124)

Figure 6-89: Hourly observed vs. CMAQ CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Queens College (361030002)

Figure 6-86: Hourly observed vs. CAMx CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Edgewood (240251001)

Figure 6-88: Hourly observed vs. CAMx CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Babylon (360810124)

Figure 6-90: Hourly observed vs. CAMx CB05 modeled 8-hour ozone on ten days used in calculation of RRF at Queens College (361030002)

Overall ozone monitors in the OTR saw a similar level of monitor performance between CMAQ and CAMx when chemistry was held constant, with CAMx having a little bit better performance than CMAQ in terms of NMB, NME and R at the monitors with the highest design values in the 2011 base year.

Gamma Platform

Moving onto the Gamma platform we compared CAMx model predictions for 2011 using the Gamma platform to the CMAQ predictions that were modeled using the Gamma platform discussed earlier in the chapter. We can see that CAMx does not predict concentrations as well throughout the OTR, but we still had results within reason. MFE values from the CAMx 2011 base case (Figure 6-91) were found to be slightly higher throughout the OTR compared to the CMAQ 2011 base case (Figure 6-92) (Note: When looking at MFE in the figures above, blue and green colors indicate better model performance). MFB results from CAMx (Figure 6-93) appear to be equivalent to the MFB CMAQ results (Figure 6-94) (Note: When looking at MFB in the figures above, green, yellow, and orange colors indicate better model performance). MAGE values from the 2011 CAMx base case (Figure 6-95), like MFE, were generally higher throughout the OTR compared to the CMAQ results (Figure 6-96) (Note: when looking at MAGE in the figures above, green, yellow, and orange colors indicate better model performance).

Figure 6-91: MFE in daily max 8-hr ozone Gamma, 60 ppb threshold, May 25-August 30; only monitors with 10 days greater than 60 ppb threshold (CAMx Gamma Run)

Figure 6-92: MFE in daily max 8-hr ozone Gamma, 60 ppb threshold; only monitors with 10 days greater than 60 ppb threshold (CMAQ Gamma Run)

Figure 6-93: MFB in daily max 8-hr ozone Gamma, 60 ppb threshold, May 25-August 30; only monitors with 10 days greater than 60 ppb threshold

Figure 6-94: MFB in daily max 8-hr ozone Gamma, 60 ppb threshold; only monitors with 10 days greater than 60 ppb threshold (CMAQ Gamma Run)

Figure 6-95: MAGE in daily max 8-hr ozone Gamma, 60 ppb threshold, May 25-August 30; only monitors with 10 days greater than 60 ppb threshold Figure 6-96: MAGE in daily max 8-hr ozone Gamma, 60 ppb threshold; only monitors with 10 days greater than 60 ppb threshold (CMAQ Gamma Run)

Summary

Various model evaluation statistics are presented here for a variety of gaseous and aerosol species in addition to O₃. In general, the CMAQ results were best for daily maximum O₃ and daily average PM_{2.5} and SO₄ mass. Other species vary tremendously over the course of a day, or from day to day, and small model over- or under-prediction at low concentrations can lead to large biases on a composite basis. We demonstrate that the model performs reasonably well over the diurnal cycle and not just in terms of daily maximum or average values. Also, we demonstrate that the CMAQ model can reliably reproduce concentrations above the ground level. Though it did not perform as well as CMAQ, the 2011 Gamma CAMx modeling platform was found to model ozone values acceptably. The analyses shown in this section demonstrates that OTC's 2011 based CMAQ and CAMx modeling platform can adequately reproduce air pollution produced through photochemical processes to a degree that will allow states to demonstrate future air pollution levels for ozone, PM_{2.5} and regional haze SIPs.

References

- Brewer, P, Tanner, J, Engelbrecht, J, Morris, R and Reynolds, S 2007, 'Carbon Analyses in the VISTAS Region for PM_{2.5} and Haze', accessed August 16, 2006, from http://www.marama.org/calendar/events/presentations/2007_07Science/BrewerMVScience0 7.pdf>.
- US EPA, 2014, 'Draft Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze' <u>https://www3.epa.gov/ttn/scram/guidance/guide/Draft_O3-PM-RH_Modeling_Guidance-2014.pdf</u>

Section 7. Evaluation of 4km Nested Gridding

Overview

In previous SIP modeling using the 2007 OTC modeling platform it was found that model performance decreased along the coastal areas. In ozone predictions were less accurate, particularly in terms of MFB, but also MFE and MAGE, at many of the coastal monitors (see Figure 6-7 through Figure 6-12). In particular, very high ozone in the Long Island Sound area showed little response to emission reductions. It was expected that due to the complex meteorology, often due to land-water interface issues, many of the problematic monitors in the OTR that could be improved through better representation of the conditions at those monitors.

One technique to improve model performance in areas with complex meteorology is to conduct photochemical modeling with a finer resolution nested grid in the areas needing improvement. A

finer grid allows emissions, particularly from point sources, to be located more precisely. It also allows the greater complexities of meteorology to play a role in modeling. The downside of using a finer grid is the increase in model run time, necessary computing power, and staff resources. Previous research has shown that as the resolution improves from 12 km marginal improvements in results decrease (Thompson and Selin 2012). OTC examined the impact of using a finer, 4km grid in the core of the OTR, as show Figure 7-1 in order to examine the potential benefits of refined grid modeling.

Meteorology Processing

NYSDEC ran WRF v. 3.6.1 using the same process and parameters as EPA used in developing the 12km meteorological data.

We relied on NAM from NCEP in 12km grid spacing to drive the WRF model. The NAM archive was missing during early March of 2011 so only the months of January, February, and April until December were processed. This was not expected to introduce major errors given that March is not typically associated with ozone production in the OTR, nor is it during the required ozone monitoring season. NLCD 2006 land use data was employed in this exercise, as was GHRSST for sea surface temperature. GHRSST has a daily resolution of 0.01 x 0.01 degree (about 1km).

Emission Inventory

We relied on EPA's modeling inventory "eh" that was based on NEI v. 2 for emissions. At the time that SMOKE processing occurred the Alpha 2 inventory was not available, but since the Alpha 2 inventory is largely uses "eh" directly in the base year this was not seen as introducing any major inaccuracies. The differences of note between the Alpha 2 inventory and the inventory used in this exercise are that CEMS data would have been directly used rather than the ERTAC smoothed EGU data. MOVES and biogenic

were not processed using SMOKE at the 4km resolution. If MOVES emission factors were used in 4km SMOKE processing the results would resolve better in particular for mobile emissions along the I-95 corridor. Biogenic emissions were re-gridded from 12km to 4km instead of being processed at 4km resolution.

Results

NMB results from the 12km in smaller domain are biased negatively and the 4km gridded results are a marked improvement throughout the entirety of the smaller domain (Figure 7-2 and Figure 7-3). NME on the other hand does not improve throughout the entirety of the smaller domain. NME results do improve along the I-95 corridor but there are increases in NME in the western part of the smaller domain, in particular in the Pittsburgh areas (Figure 7-4 and Figure 7-5).

We then took a look diurnally for 10 key monitors in the inner corridor (3 in Connecticut, 5 in New York, and 1 each in Maryland and New Jersey). There are clear improvements with predicting average monthly and peak ozone at all ten monitors in the month of June though there are instances such as with monitor 361030002 where the peak is pushed back in the day from where it is observed (Figure 7-6 through Figure 7-15).

Figure 7-6: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #090010017 (thick line: monthly avg., thin line: max day)

Figure 7-8: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #090019003 (thick line: monthly avg., thin line: max day)

Figure 7-7: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #090013007 (thick line: monthly avg., thin line: max day)

Figure 7-9: Observed and modeled (4km/12km grids) ozone (ppb for June 2011 at monitor #240251001 (thick line: monthly avg., thin line: max day)

Figure 7-10: Observed and modeled (4km/12km grids) ozone (ppb for June 2011 at monitor #34015002 (thick line: monthly avg., thin line: max day)

Figure 7-12: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #360810124 (thick line: monthly avg., thin line: max day)

Figure 7-14: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #361030002 (thick line: monthly avg., thin line: max day)

Figure 7-11: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #360050133 (thick line: monthly avg., thin line: max day)

Figure 7-13: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #360850067 (thick line: monthly avg., thin line: max day)

Figure 7-15: Observed and modeled (4km/12km grids) ozone (ppb) for June 2011 at monitor #361192004 (thick line: monthly avg., thin line: max day)

The same pattern holds for July, excepting monitor 240251001, which is under-predicted slightly more on the peak day (Figure 7-16 through Figure 7-25).

Figure 7-16: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #090010017 (thick line: monthly avg., thin line: max day)

Figure 7-18: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #090019003 (thick line: monthly avg., thin line: max day)

Figure 7-20: Observed and modeled (4km/12km grids) ozone (ppb for July 2011 at monitor #34015002 (thick line: monthly avg., thin line: max day)

Figure 7-17: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #090013007 (thick line: monthly avg., thin line: max day)

Figure 7-19: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #240251001 (thick line: monthly avg., thin line: max day)

Figure 7-21: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #360050133 (thick line: monthly avg., thin line: max day)

Figure 7-22: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #360810124 (thick line: monthly avg., thin line: max day)

Figure 7-24: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #361030002 (thick line: monthly avg., thin line: max day)

Figure 7-23: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #360850067 (thick line: monthly avg., thin line: max day)

Figure 7-25: Observed and modeled (4km/12km grids) ozone (ppb) for July 2011 at monitor #361192004 (thick line: monthly avg., thin line: max day)

The same pattern also holds for August, with monitors 090019003 and 240251001 having peak concentrations predicted later in the day than observations on the peak day (Figure 7-26 through Figure 7-35).

Figure 7-26: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #090010017 (thick line: monthly avg., thin line: max day)

Figure 7-28: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #090019003 (thick line: monthly avg., thin line: max day)

Figure 7-30: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #34015002 (thick line: monthly avg., thin line: max day)

Figure 7-27: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #090013007 (thick line: monthly avg., thin line: max day)

Figure 7-29: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #240251001 (thick line: monthly avg., thin line: max day)

Figure 7-31: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #360050133 (thick line: monthly avg., thin line: max day)

Figure 7-32: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #360810124 (thick line: monthly avg., thin line: max day)

Figure 7-34: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #361030002 (thick line: monthly avg., thin line: max day)

Figure 7-33: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #360850067 (thick line: monthly avg., thin line: max day)

Figure 7-35: Observed and modeled (4km/12km grids) ozone (ppb) for August 2011 at monitor #361192004 (thick line: monthly avg., thin line: max day)

Conclusion

Use of a 4km nested grid in the OTR does lead to improvements in modeled performance, in particular when looking at predictions during peak days at coastal monitors. When looking at the entirety of the smaller domain there are even dis-benefits in terms of model performance in the western portion of the domain. Processing time using the 4km domain described in this section is increased six-fold, which results in a 7-month CMAQ run which takes over a month to complete. If further work is conducted using 4km modeling that relies on use of OTC inventory, to both conserve computing resources and improve model performance, it is recommended that only the inner corridor be modeled with the finer grid.

References

Thompson, TM and Selin, NE 2012, 'Influence of air quality model resolution on uncertainty associated with health impacts', *Atmospheric Chemistry and Physics*, vol. 12, no. 20, pp. 9753–9762.

Section 8. Emissions Inventories and Processing for 2017/2018/2020/2023/2028 12 km Future Year Simulation

Emission Inventory Sectors

All the inventory sectors are the same as in the base year and their brief descriptions can be found in Section 4.

US Future Year Base Case Emissions Inventories

The OTR states, through MANE-VU and MARAMA, developed the portions of the 2023 Gamma, 2020 Gamma, 2017 Beta/Beta 2, 2018 Alpha/Alpha 2, and 2028 Alpha/Alpha 2/Gamma inventories based on 2011 inventories as discussed earlier. The remaining sectors not developed through state processes were taken from US EPA.

MARAMA, through a contractor SRA, in consultation with the states, developed the necessary growth and control factors to project the 2011 inventory to a future year and applied them to develop both 2018 and 2028 Alpha 2 inventories. These growth factors were used for all the jurisdictions in the OTC, in addition to West Virginia, North Carolina, and the rest of Virginia (McDill et al. 2015). Growth rates for the states in LADCO were obtained from LADCO and we relied on default assumptions from EPA for all other states (McDill et al. 2015). The same process was undertaken for the Beta/Beta 2 inventory projections to 2017 (McDill et al. 2016) and for the Gamma inventory projects to 2020 and 2023 (McDill et al. 2018), respectively.

The Gamma inventory for 2028 was developed slightly differently. In this case the inventory sectors provided by EPA as part of their 2028 package were used and compared against the MARAMA Alpha 2 2028. This was possible since EPA relied on the same MARAMA projections discussed earlier when developing the 2028 EPA projections (US EPA 2017). Any units that were not in MARAMA 2028 Alpha 2, but were in EPA's 2028 haze modeling inventory were removed using a closure packet, except ones confirmed by states to still be operating. These sectors were then temporalized in the same fashion as described in Section 4.

It should be noted that future year emissions for the EGUs were projected with the ERTAC EGU tool (please see below) and those for mobile sources were developed under separate efforts from those discussed in this section.

For the sectors that were not projected by MARAMA they were either taken directly from EPA inventories or were interpolated from two distinct EPA inventories. The Beta inventory for 2017 relied on EPA's 'eh' inventory. The Gamma inventory for 2028 was taken from the EPA 'el' inventory. In order to develop the sectors for the 2020 Gamma inventory a grid cell by grid cell interpolation was conducted between the 2017 'eh' and 2023 'el' inventories. The Gamma inventory for 2023 was taken from the EPA 'en' inventory.

EGU emissions were processed using the ERTAC EGU tool v. 1.01 and were post-processed using ERTAC to SMOKE v. 1.02, excepting the Gamma inventories which were processed using the ERTAC EGU tool v2.1. The projections for the Alpha and Alpha 2 inventories were based on growth assumptions from the 2014 AEO and the collection of inputs were termed ERTAC EGU v. 2.3 (ERTAC Workgroup n.d.; US

Energy Information Administration April 2014). The projections for the Beta inventory were upgraded to ERTAC EGU v. 2.5 and to ERTAC EGU v. 2.5L2 for the Beta 2 inventory , which were both processed using the same versions of the code and were based on growth assumptions from the 2015 AEO (ERTAC Workgroup 2016; US Energy Information Administration April 2015). The projections for the Gamma/Gamma 2 inventory were upgraded to the ERTAC EGU v. 2.7 optimized case for 2020, 2023, and 2028, with the optimized case having emission rates that were optimized to comply with the CSPAR Update program (ERTAC EGU Committee DRAFT).

A full table follows in Table 8-1 showing where inventory sectors were taken from and greater details about which inventory files were used are located in Appendix B.

SECTOR	Alpha/Alpha 2	Beta/Beta 2	Gamma 2023	Gamma 2020	Gamma 2028
Ag. Fugitive Dust	EPA v6.2 eh	EPA v6.2 eh	EPA v6.3 el	2011 ek - 2023 el v6.3 Interpolation	EPA v6.3 el
Agricultural	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 el	2011 ek - 2023 el v6.3 Interpolation	EPA v6.3 el
Agricultural Fire	2011 EPA v6.2 eh	2011 EPA v6.3 ek	2011 EPA v6.3 ek	2011 EPA v6.3 ek	2011 EPA v6.3 ek
Biogenics	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 ek	EPA v6.3 ek	EPA v6.3 ek
C1C2 Marine	EPA v6.2 eh	EPA v6.2 eh	EPA v6.3 en	2011-23 en v6.3 Interpolation	EPA v6.3 el
C3 Marine	EPA v6.2 eh (α) EPA v6.3 ej (α 2)	EPA v6.3 ek	EPA v6.3 en	2011-23 en v6.3 Interpolation	EPA v6.3 el
ERTAC EGU	ERTAC v2.3	ERTAC v2.5L	ERTAC v2.7	ERTAC v2.7	ERTAC v2.7
Ethanol	MARAMA α	MARAMA β	EPA v6.3 el	EPA v6.3 el	EPA v6.3 el
Non-EGU Point	MARAMA α	MARAMA β	MARAMA γ	MARAMA γ	EPA v6.3 el
Point source offsets	n/a	MARAMA β	MARAMA γ	MARAMA γ	MARAMA γ
Non-ERTAC IPM EGUs	MARAMA α	MARAMA β	MARAMA γ	MARAMA γ	2023 MARAMA β
Non-Point	MARAMA α	MARAMA β	MARAMA γ	MARAMA γ	EPA v6.3 el
Non-point Oil & Gas	EPA v6.2 eh	MARAMA β	EPA v6.3 el	MARAMA γ	EPA v6.3 el
Nonroad	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 en	2011 ek - 2023 el v6.3 Interpolation	EPA v6.3 el
Onroad	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 el	2011 ek - 2023 el v6.3 Interpolation	EPA v6.3 el
Point Oil &gas	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 en	MARAMA γ	EPA v6.3 el
Prescribed/Wild Fires	2011 EPA v6.2 eh	2011 MARAMA β	2011 MARAMA β	2011 MARAMA β	2011 MARAMA β
Rail	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 el	2011 ek - 2023 el v6.3 Interpolation	EPA v6.3 el
Refueling	MARAMA α	MARAMA β	EPA v6.3 el	2011 ek - 2023 el v6.3 Interpolation	EPA v6.3 el
RWC	EPA v6.2 eh	EPA v6.3 ek	EPA v6.3 el	2011 ek - 2023 el v6.3 Interpolation	EPA v6.3 el
Canadian	2011 EPA v6.2 eh	2011 EPA v6.3 ek	EPA v6.3 en	2011-23 en v6.3 Interpolation	2023 EPA v6.3 en

Table 8-1: Inventories used at each stage of OTC 2011 base year modeling

Canadian Future Base Case Emissions

Canadian emissions were estimated in the future years by taking the ratio of US domain 2011 emissions to 2017, 2018, and 2028 emissions and applying that ratio to the 2010 Canadian emissions used in the base year (McDill et al. 2015, 2016).

Application of SMOKE

All of the inventories were processed by NYSDEC using a template similar to that used for processing 2011 base year emissions for the 12 km domain. In particular, all gridding and speciation profiles, cross-reference files, and temporal allocation profiles used in the 2011 processing were also used for future year processing, excepting the hourly temporal files for ERTAC EGUs for all years and small EGUs for 2017, 2020, 2023, and 2028. A full list of files is in Appendix A.

Emissions for all source categories were processed by SMOKE version 3.7 for Beta, Beta 2 and Gamma and SMOKE version 3.6 for Alpha and Alpha 2. The SMOKE programs downloaded from CMAS website have been compiled for LINUX systems and are ready for use.

SMOKE Processed Emission Results

In order to quality assure that the outputs from SMOKE were properly distributed geographically and to develop a better understanding of the geographical and temporalization of emissions, maps of emissions in each grid cell were produced. These maps were produced from the Alpha 2 inventory. We looked at projected daily emissions on a typical summer day during 2011 (June 24) and projected daily emissions during a 2011 ozone event (July 22). We looked at NO_x and SO₂ gridded emissions. We chose not to include VOCs since biogenic emissions are held constant and overwhelm regional anthropogenic VOC emissions. Urban areas, interstate highways in rural areas, and shipping lanes are clearly distinguishable in the maps of NO_x emissions (Figure 8-1). There are minor differences at this scale on a peak day where one can notice increases in some grid cells during the ozone event (Figure 8-2). One can see the importance of point sources in terms of SO₂ emissions and there were increases at some grid cells, particularly in the Long Island Sound, on the New England coast and some Pennsylvanian EGUs, during the projected ozone event (Figure 8-3 and Figure 8-4).

When one compares the projections to the baseline found in Section 4 one notices, that on both the typical summer day and the ozone-conducive day, that emissions of NO_x decrease regionally and that a fair number of SO_2 point sources disappear in the projection because of retirements and shutdowns.

Additionally, summary tables of emissions by RPO, sector, and pollutant were outputted from SMOKE processing. For Alpha 2 and Beta2, states that are fully within the modeling domain are summed separately from states partially in the domain. For the Gamma emission inventories, only the states fully in the modeling domain are included in the summaries. The results are aggregated for the 2018 Alpha 2 inventory in Table 8-2, the 2028 Alpha 2 inventory in Table 8-3, the 2017 Beta 2 inventory in Table 8-4, the 2020 Gamma inventory in Table 8-5, the 2023 Gamma inventory in Table 8-6, and the 2028 Gamma inventory in Table 8-7.

Figure 8-1: MARAMA 2018 Projected Alpha 2 NO_x SMOKE Gridded Emissions (June 24)

Figure 8-3: MARAMA 2018 Projected Alpha 2 SO₂ SMOKE Gridded Emissions (June 24)

Figure 8-2: MARAMA 2018 Projected Alpha 2 NO $_{\rm X}$ SMOKE Gridded Emissions (July 22)

Figure 8-4: MARAMA 2018 Projected Alpha 2 SO_2 SMOKE Gridded Emissions (July 22)

Full State/ Partial State	RPO	ERTAC EGU	Non-EGU Point & Small EGU	Nonroad (including M/A/R)	Onroad	Non-point (including RWC & Refueling)	Oil/Gas	Other (including biogenic)	Total
				Ν	IO _x				
Full State	MANE-VU	141,249	161,900	272,855	345,812	195,191	89,499	1,018	1,207,525
	LADCO	259,317	244,990	289,808	470,642	155,456	79,332	2,607	1,502,152
	SESARM	225,952	177,994	326,069	367,913	71,592	134,970	17,077	1,321,567
Partial State	LADCO	35,110	35,890	52,674	56,993	26,176	2,880	9,851	219,574
	SESARM	96,887	108,064	194,919	209,158	37,606	59,390	60,218	766,241
	CENSARA	403,929	336,448	397,841	574,792	143,136	663,430	116,659	2,636,234
	Canada		143,534	189,400	124,557	59,134			516,625
	US EEZ			1.016.290					1.016.290
	Interntnl.			2.380.100					2,380,100
NO _v Total	1	1.162.444	1,208,820	5.119.956	2,149,867	688.291	1.029.500	207.430	11.566.309
		_,,	_//	V	OC		_/0_0/000		
Full State	MANE-VU	2.266	55.126	250.649	192.119	657.271	47.889	21.238	1.226.558
	LADCO	6.866	148.004	262.671	240.565	639.357	55.304	39.304	1.392.070
	SESARM	4 907	161 491	161 838	172 752	481 957	151 535	186 020	1.320.500
Partial State		1 523	19 307	53 517	32 920	117 235	130	188 478	413 109
i ai tiai State	SESADA	1,525	72 276	80.685	00 552	262.008	60 156	210 017	800 025
		4,429	72,270	207.000	35,333	202,008	1 729 124	1 625 956	4 907 101
	CENSARA	12,551	222,180	207,909	254,008	835,803	1,728,134	1,035,850	4,897,101
	Canada		193,891	123,156	60,045	532,000			909,758
	US EEZ			41,341					41,341
	Interntnl.			95,716					95,716
VOC Total		32,541	872,277	1,286,483	1,052,622	3,526,297	2,043,148	2,381,813	11,195,180
	1			5	6 0 2				
Full State	MANE-VU	239,683	77,689	4,897	1,948	56,235	4,434	612	385,498
	LADCO	488,043	237,850	842	2,023	19,404	1,523	1,353	751,037
	SESARM	329,298	98,822	1,401	1,614	30,312	3,384	7,640	472,472
Partial State	LADCO	67,455	13,470	103	249	6,465	82	5,687	93,511
	SESARM	101,181	72,911	721	933	30,363	26,140	20,498	252,747
	CENSARA	882,412	233,504	3,016	2,451	43,881	25,286	58,760	1,249,310
	Canada		362,365	32,651	607	36,964			432,586
	US EEZ			113,282					113,282
	Interntnl.			1,672,100					1,672,100
SO₂ Total		2,108,072	1,096,611	1,829,013	9,825	223,623	60,849	94,551	5,422,544
				P	M _{2.5}				
Full State	MANE-VU	13,776	28,341	19,768	16,436	170,115	2,560	25,958	276,954
	LADCO	57,915	50,497	19,831	20,030	166,504	1,387	126,737	442,902
	SESARM	44,846	39,231	16,745	13,654	97,554	3,033	110,196	325,259
Partial State	LADCO	5.369	14.056	3.743	2.527	45.901	29	90.555	162.180
	SESARM	21 615	33 583	9 556	7 999	87 075	1 399	274 013	435,240
	CENSARA	73 452	84 040	25 312	21 852	123 688	17 071	1 033 122	1.378.538
	Canada		25 261	13,805	5 093	105 607	,	323 474	473 240
			25,201	27 544	3,033	105,007		525,474	27 544
	Interntal			27,344					27,344
	Interntni.	216 072	275 000	207,330	07 500	706 445	25 470	1 004 050	207,330
PIVI2.5 TOTAL		216,972	275,009	343,634	87,590	796,445	25,479	1,984,056	3,729,185
		2 204	5 220	r	NH3	44.020	47	100 470	
Full State	MANE-VU	2,381	5,220	419	13,243	14,920	17	169,173	205,372
	LADCO	-	7,713	490	12,522	20,170	12	487,770	528,677
	SESARM	275	6,770	374	10,787	5,589	4	360,853	384,653
Partial State	LADCO	-	1,210	81	1,614	3,349	47	205,121	211,422
	SESARM	-	9,835	232	5,895	2,843	2	244,742	263,549
	CENSARA	-	23,279	1,194	14,475	17,190	48	1,394,423	1,450,609
	Canada		5,232	203	9,641	3,091		183,853	202,020
	US EEZ			216					216
	Interntnl.			-					-
NH₃ Total		2,656	59,260	3,208	68,176	67,152	130	3,045,936	3,246,518
-					0				
Full State	MANE-VU	68,463	237,066	2,550,632	2,145,813	884,490	80,265	90,739	6,057,469
	LADCO	134,287	706.098	2.187.265	2.570.440	1.015.890	48.517	166,190	6.828.686
	SESARM	104.669	315.743	1.514.543	1.929.857	529,343	134.134	842.359	5,370,648
Partial State		18 677	23 490	309 030	344 820	260 290	551	800 131	1 756 989
, artial State	SECADA	64 026	120 702	705 071	1 072 200	101 220	30.650	1 072 1/1	4 570 314
		200 247	208 047	1 0/7 720	2 852 610	434,333	50,050	1,372,143	4,570,214
	CEINSAKA	200,347	398,047	1,947,730	2,853,010	/8/,/20	502,020	0,907,090	13,396,576
	Canada		568,160	2,003,059	1,300,915	648,333			4,520,467
				co. o / -					
	US EEZ			63,245					63,245
	US EEZ Interntnl.			63,245 34,933					63,245 34,933

Table 8-2: 2018 base case Alpha 2 emissions	tons) b	pollutant and RPO for aggregated sectors from SMOKE p	rocessed emission reports

Full State/ Partial State	RPO	ERTAC EGU	Non-EGU Point & Small EGU	Nonroad (including M/A/R)	Onroad	Non-point (including RWC & Refueling)	Oil/Gas	Other (including biogenic)	Total
Tull Chata		144 224	100 205	205 240	NO _x	102 520	100.053	1 200	1 026 042
Full State	MANE-VU	266 842	251 116	205,249	213,308	192,539	109,952	1,389	1,036,043
	SESARM	200,843	186,000	152 705	283,000	69 944	155 843	19 185	1,248,785
Partial State	LADCO	19 973	36 926	37 603	32 180	25 312	2 878	10 924	165.795
i ultilui stute	SESARM	97.741	108.708	80.929	119.168	33.509	60.445	64.305	564.805
	CENSARA	429.956	361.080	444.053	351.529	127.495	680.492	132.486	2.527.092
	Canada	-,	143,534	189,400	124,557	59,134	, -	-,	516,625
	US EEZ			345,540					345,540
	Interntnl.			30,139					30,139
NO _x Total		1,164,800	1,256,649	1,698,188	1,340,251	664,015	1,086,161	230,911	7,440,976
Full State		2 797	56 228	210 555	122 470	600 224	20 140	22 008	1 171 622
i un state		7 784	148 692	213,333	157 652	688 641	43 801	39 329	1 308 072
	SESARM	4 979	163 643	134 104	107 266	515 026	116 116	190.056	1 231 191
Partial State		656	19 372	41 648	20 403	122 479	130	190,000	395 024
i ui tiui state	SESARM	4 878	72 343	74 148	59 997	265 842	61 246	317 985	856.438
	CENSARA	15 021	237 729	196 286	163 445	825 579	1 694 250	1 663 414	4.795.725
	Canada	10,021	193,891	123,156	60,045	532,666	1,00 4,200	1,000,414	909,758
	US EEZ		,	17,465	,=				17,465
	Interntnl.			1,378					1,378
VOC Total		36,105	891,908	1,029,915	701,277	3,649,567	1,954,683	2,423,219	10,686,674
	1				SO2				
Full State	MANE-VU	259,171	78,050	3,598	1,881	39,869	5,837	773	389,179
	LADCO	495,592	238,354	3,595	1,961	19,959	1,549	1,360	762,370
B	SESARM	294,228	100,703	2,890	1,566	29,144	4,308	8,287	441,125
Partial State	LADCO	23,609	13,587	211	242	6,082	82	6,178	49,991
	SESARIVI	52,898	74,123	3,232	926	28,516	30,927	22,383	213,005
	CENSARA	923,140	239,988	19,337	2,439	38,639	24,168	64,365	1,312,077
			302,305	32,051	007	30,904			432,580
	US EEZ			8,910					8,910
SO ₂ Total	internetii.	2,048,638	1,107,170	78,806	9,624	199,173	66,870	103,346	3,613,626
		, ,	, ,	, F	PM _{2.5}	,	,	,	
Full State	MANE-VU	14,728	28,639	14,941	11,779	170,107	2,986	30,781	273,961
	LADCO	62,684	50,480	14,069	13,216	178,806	1,306	136,303	456,864
	SESARM	41,008	39,708	10,122	9,158	92,867	3,492	118,883	315,238
Partial State	LADCO	4,725	14,070	2,455	1,658	46,254	29	93,842	163,033
	SESARM	24,501	33,631	5,397	5,390	78,540	1,429	286,443	435,332
	CENSARA	76,811	87,303	22,377	14,569	89,090	17,241	1,105,953	1,413,345
	Canada		25,261	13,805	5,093	105,607		323,474	473,240
	USEEZ			9,109					9,109
	Interntni.	224.457	270.000	651	60.064	764 274	26 405	2 005 670	651
PM _{2.5} Total		224,457	279,093	92,925	60,861	761,271	26,485	2,095,679	3,540,771
Full State	MANE-VU	1,947	5,265	459	13,087	15,049	17	169,317	205,140
	LADCO	172	7,677	546	12,265	20,733	13	499,032	540,437
	SESARM	461	6,835	334	10,336	5,654	4	362,702	386,326
Partial State	LADCO	16	1,210	90	1,538	3,470	47	210,051	216,422
	SESARM	220	9,747	172	5,793	2,852	3	251,392	270,179
	CENSARA	1,334	23,705	1,782	14,361	14,673	45	1,423,131	1,479,031
	Canada		5,232	203	9,641	3,091		183,853	202,020
	US EEZ			216					216
	Interntnl.			-					-
NH₃ Total		4,150	59,672	3,802	67,021	65,522	127	3,099,478	3,299,771
Full State		12 017	247 007	2 712 222	1 561 520	076 202	102 /18	101 956	5 746 674
, an state		148 047	716 781	2,712,555	1 78/ //7	1 101 658	45 031	166 518	6 211 968
	SESARM	94 570	326 583	1 566 483	1 373 816	487 016	160 3/15	893 773	4 852 585
Partial State		11 705	25 129	305 806	229 //5	254 188	551	873 656	4,052,505
i ai tiai State	SESARM	72 418	142 227	812 95/	739 875	204,100 404 411	32 1/18	2 062 938	4 266 971
	CENSARA	223.558	423.986	2.413 115	2.002 015	446.099	513,122	7,256 028	13.277.922
	Canada	220,000	568 160	2 003 059	1 300 915	648 333	510,122	,,,,	4.520 467
			000,100	05 287	1,000,010	0.0,000			05 297
				33,207					33,207
	Interntnl.			3,245					3,245

Table 8-3: 2028 base case Alpha 2 emissions (tons) by pollutant and RPO for aggregated sectors from SMOKE processed emission reports

Full State/	RPO	ERTAC EGU	Non-EGU	Nonroad	Onroad	Non-point	Oil/Gas	Other (including	Total
Partial State			Small EGU	(Including M/A/R)		& Refueling)		biogenic)	
				N	IO _x				
Full State	MANE-VU	99,123	151,352	264,570	381,046	180,425	75,550	1,166	1,153,231
	LADCO	252,202	236,765	301,961	500,530	156,682	66,279	2,612	1,517,032
Dortial State	SESARM	198,486	158,645	215,201	412,130	69,091	97,726	18,262	1,169,541
Partial State	SESADA	19,522	45,149	110 022	202 440	24,374	27.025	9,920	198,207
	CENSARA	401 928	329 949	622 921	154 499	131 281	588 721	127 577	2.356.877
	Canada	101,510	143,534	189,400	124,557	59,134	500,721	127,077	516,625
	US EEZ			460,270					460,270
	Interntnl.			24,340					24,340
NO _x Total		1,049,087	1,170,466	2,243,853	1,819,232	654,251	865,421	221,134	8,023,443
Full State		2 576	F4 220	260.225 V	OC		F0 (11	21 570	1 259 724
run state		2,570	54,220	200,225	214,498	640 242	50,011 84 124	21,570	1,258,724
	SESARM	4 559	156 401	164 413	197 893	487 402	179 025	188 260	1 377 953
Partial State	LADCO	503	19.446	56.583	25.386	114.846	45	188.610	405.419
	SESARM	3,302	72,265	92,072	97,455	259,306	46,635	313,324	884,360
	CENSARA	10,135	225,001	226,113	63,870	834,819	1,969,444	1,654,956	4,984,338
	Canada		193,891	123,156	60,045	532,666			909,758
	US EEZ			15,611					15,611
	Interntnl.			962					962
VOC Total		27,394	866,162	1,214,536	910,012	3,524,407	2,329,894	2,406,032	11,278,435
Full State	MANE-VU	190 640	83 208	1 523	1 922	32 936	6 357	667	317,253
i un state	LADCO	542,997	251,809	625	1,927	15,214	1,344	1,355	815,271
	SESARM	279,049	133,403	621	1,579	19,893	4,493	8,016	447,055
Partial State	LADCO	25,816	16,779	97	175	3,159	3	5,722	51,752
	SESARM	42,334	73,052	284	800	9,615	25,853	21,104	173,043
	CENSARA	830,790	265,990	1,467	518	6,437	31,987	62,174	1,199,364
	Canada		362,365	32,651	607	36,964			432,586
	US EEZ			2,803					2,803
SO ₂ Total	interntii.	1 911 626	1 186 606	56 901	7 530	174 219	70.037	99 039	3 455 958
50210101		1,511,020	1,100,000	PI	V _{2.5}	124,213	10,037	55,655	3,433,330
Full State	MANE-VU	14,234	28,387	18,956	17,186	157,362	3,200	28,756	268,080
	LADCO	38,625	51,623	21,027	19,937	159,719	1,374	132,426	424,730
	SESARM	29,147	41,289	14,294	14,692	91,055	3,164	114,826	308,466
Partial State	LADCO	2,500	14,422	3,997	1,925	43,017	1	91,596	157,458
	SESARM	8,326	36,086	7,363	7,410	79,980	924	277,243	417,330
	Canada	40,942	91,684	31,650	5,742	91,570	17,208	1,066,261	1,345,057
	LIS FF7		23,201	8 379	3,093	105,007		323,474	8 379
	Interntnl.			2.087					2.087
PM _{2.5} Total		133,773	288,752	121,557	71,984	728,310	25,871	2,034,582	3,404,828
				N	IH ₃	·			
Full State	MANE-VU	2,609	5,151	413	13,738	14,395	17	167,747	204,069
	LADCO	832	7,682	483	12,922	19,758	10	485,163	526,849
Doutial State	SESARM	1,313	6,636	305	11,394	5,521	4	362,243	387,416
Partial State	SESARM	1836	9.496	80 157	5 360	3,270	2	204,351	210,313
	CENSARA	5 627	22 805	1 315	3 117	14 702	51	1 414 226	1.461.844
	Canada	3,027	5,232	203	9,641	3,091	51	183,853	202,020
	US EEZ			216					216
	Interntnl.								
NH ₃ Total		12,333	58,329	3,172	57,331	63,654	85	3,061,265	3,256,170
Eull State		29 566	220 170	2 641 931	2 270 100	864.060	72 624	05 550	6 121 200
runstate		30,300	238,478	2,341,821	2,279,190	004,009	13,024	33,330	6 817 510
	SESARM	68 512	320 682	2,192,332	2,045,200	470 919	40,739 99 094	870 770	5,383,203
Partial State	LADCO	7,666	27,981	311,485	258,700	225,080	24	801,859	1,632,795
	SESARM	31,967	161,054	771,901	996,800	405,101	22,773	2,003,907	4,393,503
	CENSARA	184,816	436,622	1,997,595	640,342	448,849	472,366	7,145,277	11,325,866
	Canada		568,160	2,003,059	1,300,915	648,333			4,520,467
	US EEZ			85,941					85,941
	Interntnl.	100 1		2,267	10 10				2,267
CO Total		409,465	2,487,623	11,394,325	10,186,647	4,014,513	/16,619	11,083,666	40,292,858

Table 8-4: 2017 base case Beta 2 emissions (tons) by pollutant and RPO for aggregated sectors from SMOKE processed emission reports
Table 8-5: 2020 base case Gamma emissions (tons) by pollutant and RPO for aggregated sectors from SMOKE processed emission report	5
(states fully in the modeling domain only)	

Full State/ Partial State	RPO	ERTAC EGU	Non-EGU Point & Small EGU	Nonroad (including M/A/R)	Onroad	Non-point (including RWC & Refueling)	Oil/Gas	Other (including biogenic)	Total		
NO _X											
Full State	MANE-VU	82,144	152,978	247,717	306,810	178,114	90,699	365	1,058,828		
	LADCO	194,033	233,709	281,088	401,002	159,364	68,106	15	1,337,316		
	SESARM	160,240	153,429	197,644	328,206	70,863	89,367	2,094	1,001,843		
NO _x Total		436,416	540,117	726,449	1,036,018	408,340	248,172	2,474	3,397,987		
				1	/OC						
Full State	MANE-VU	4,334	55,114	258,671	181,928	647,818	52,904	846	1,201,616		
	LADCO	5,338	142,702	267,747	206,689	633,628	66,531	25	1,322,660		
	SESARM	4,503	156,894	160,865	163,375	481,910	113,136	4,009	1,084,692		
VOC Total		14,175	354,710	687,284	551,992	1,763,356	232,571	4,881	3,608,968		
				:	SO2						
Full State	MANE-VU	183,717	83,431	7,749	1,839	26,718	8,114	158	311,727		
	LADCO	390,373	226,119	1,971	1,858	16,087	3,154	7	639,570		
	SESARM	203,505	112,064	2,525	1,531	21,419	4,340	643	346,026		
SO ₂ Total		777,596	421,613	12,245	5,229	64,224	15,608	809	1,297,323		
				Р	M _{2.5}						
Full State	MANE-VU	13,928	28,545	18,228	14,499	154,712	3,742	21,638	255,293		
	LADCO	31,650	51,379	19,462	16,164	152,337	1,327	119,705	392,025		
	SESARM	27,465	39,699	13,248	12,120	91,738	2,990	38,954	226,215		
PM _{2.5} Total		73,043	119,623	50,939	42,783	398,787	8,060	180,297	873,532		
					NH₃						
Full State	MANE-VU	2,963	5,167	431	13,226	14,107	17	166,715	202,625		
	LADCO	2,018	7,668	504	12,436	19,415	12	483,154	525,207		
	SESARM	1,476	6,187	317	10,901	5,525	4	351,798	376,208		
NH ₃ Total		6,456	19,021	1,251	36,564	39,048	33	1,001,666	1,104,040		
					со						
Full State	MANE-VU	17,798	37,735	19,400	40,311	163,627	3,841	1,899	284,610		
	LADCO	43,050	74,891	20,734	41,340	157,228	1,335	57	338,637		
	SESARM	34,933	57,460	14,043	30,528	103,191	3,017	6,879	250,051		
CO Total		95,781	170,086	54,177	112,179	424,047	8,193	8,835	873,297		

Table 8-6: 2023 base case Gamma emissions (tons) by pollutant and RPO for aggregated sectors from SMOKE processed emission repo	rts
(states fully in the modeling domain only)	

Full State/ Partial State	RPO	ERTAC EGU	Non-EGU Point & Small EGU	Nonroad (including M/A/R)	Onroad	Non-point (including RWC & Refueling)	Oil/Gas	Other (including biogenic)	Total		
NO _x											
Full State	MANE-VU	84,525	154,146	214,581	231,542	177,085	70,509	1,384	933,772		
	LADCO	189,331	241,081	234,670	301,824	160,611	71,222	2,622	1,201,361		
	SESARM	157,442	160,842	166,868	242,736	71,612	93,432	19,171	912,103		
NO _x Total		431,298	556,069	616,119	776,102	409,308	235,163	23,177	3,047,236		
				VO	С						
Full State	MANE-VU	3,913	55,072	223,788	147,910	661,386	45,121	22,084	1,159,274		
	LADCO	5,407	146,603	227,762	161,585	666,099	107,523	39,329	1,354,309		
	SESARM	4,701	160,565	136,708	126,996	530,055	142,310	190,030	1,291,364		
VOC Total		14,021	362,239	588,258	436,491	1,857,540	294,955	251,443	3,804,947		
				SO	2						
Full State	MANE-VU	197,693	83,627	1,837	1,752	28,200	6,052	771	319,931		
	LADCO	365,687	258,648	693	1,801	15,065	6,577	1,360	649,832		
	SESARM	195,982	119,045	735	1,480	20,885	621	8,283	347,032		
SO ₂ Total		759,362	461,320	3,265	5,034	64,150	13,250	10,414	1,316,795		
				PM	2.5						
Full State	MANE-VU	14,242	28,585	15,030	11,725	152,689	2,988	29,571	254,830		
	LADCO	31,505	52,213	15,398	12,743	151,342	1,523	135,543	400,267		
	SESARM	27,721	40,873	10,690	9,475	92,288	3,400	119,308	303,754		
PM _{2.5} Total		73,467	121,671	41,118	33,943	396,319	7,911	284,422	958,851		
				NH	3						
Full State	MANE-VU	2,900	5,167	446	12,688	13,837	16	169,063	204,117		
	LADCO	1,984	7,724	520	11,875	19,332	15	489,491	530,941		
	SESARM	1,795	6,333	327	10,366	5,528	4	368,954	393,307		
NH ₃ Total		6,680	19,224	1,292	34,929	38,697	35	1,027,508	1,128,365		
				cc)						
Full State	MANE-VU	40,367	245,144	2,653,452	1,687,555	819,303	69,000	101,774	5,616,594		
	LADCO	54,782	735,900	2,223,409	1,897,936	901,023	43,287	166,518	6,022,856		
	SESARM	53,826	325,925	1,537,983	1,499,233	466,883	95,247	893,400	4,872,496		
CO Total		148,974	1,306,969	6,414,844	5,084,724	2,187,209	207,533	1,161,693	16,511,946		

able 8-7: 2028 base case Gamma emissions (tons) by pollutant and RPO for aggregated sectors from SMOKE processed emission report:	;
states fully in the modeling domain only)	

Full State/ Partial State	RPO	ERTAC EGU	Non-EGU Point & Small EGU	Nonroad (including M/A/R)	Onroad	Non-point (including RWC & Refueling)	Oil/Gas	Other (including biogenic)	Total		
NO _x											
Full State	MANE-VU	158,837	292,996	386,465	331,491	354,448	141,475	2,767	1,668,480		
	LADCO	348,231	492,028	405,415	439,823	320,370	224,757	5,244	2,235,869		
	SESARM	306,427	321,556	288,147	345,055	142,846	242,723	38,343	1,685,097		
NO _x Total		813,495	1,106,580	1,080,027	1,116,370	817,665	608,955	46,354	5,589,446		
				VO	С						
Full State	MANE-VU	9,742	108,743	439,614	222,301	1,318,126	99,660	44,168	2,242,354		
	LADCO	10,992	296,598	438,570	239,501	1,322,374	186,831	78,658	2,573,524		
	SESARM	9,742	303,854	264,776	182,868	1,058,056	392,582	380,059	2,591,936		
VOC Total		30,476	709,195	1,142,959	644,671	3,698,556	679,073	502,885	7,407,815		
				SO;	2						
Full State	MANE-VU	391,667	151,332	3,934	3,284	44,007	12,739	1,541	608,504		
	LADCO	683,297	522,171	1,436	3,509	26,741	9,442	2,720	1,249,316		
	SESARM	396,600	240,078	1,591	2,847	31,083	3,805	16,567	692,571		
SO ₂ Total		1,471,564	913,581	6,962	9,640	101,831	25,986	20,828	2,550,391		
				PM ₂	2.5						
Full State	MANE-VU	30,121	56,523	27,546	18,431	301,805	6,202	59,911	500,540		
	LADCO	63,706	105,032	26,281	19,765	291,813	7,552	275,847	789,996		
	SESARM	57,372	80,350	18,716	14,618	183,915	11,005	240,548	606,525		
PM _{2.5} Total		151,200	241,904	72,543	52,814	777,534	24,759	576,306	1,897,061		
				NH	3						
Full State	MANE-VU	6,227	10,247	951	25,264	27,283	32	338,128	408,132		
	LADCO	4,225	15,490	1,112	23,972	38,172	72	982,323	1,065,365		
	SESARM	3,815	12,829	694	20,876	11,046	8	741,999	791,268		
NH ₃ Total		14,268	38,565	2,756	70,112	76,501	112	2,062,451	2,264,765		
				co							
Full State	MANE-VU	84,936	481,976	5,614,856	2,507,681	1,613,336	139,925	203,549	10,646,257		
	LADCO	111,462	1,476,840	4,626,388	2,762,732	1,737,097	190,090	333,036	11,237,645		
	SESARM	112,798	651,877	3,241,115	2,174,017	928,246	267,613	1,786,801	9,162,466		
CO Total		309,196	2,610,693	13,482,358	7,444,429	4,278,679	597,628	2,323,386	31,046,369		

References

- ERTAC EGU Committee DRAFT, 'Documentation of ERTAC EGU CONUS Versions 2.7 Reference and CSAPR Update Compliant Scenario'.
- ERTAC Workgroup 2016, 'Documentation of ERTAC EGU CONUS Versions 2.5 and 2.5L2', accessed from http://www.marama.org/images/stories/documents/events/Documentation_of_ERTAC_EGU_CONUS_2_5L_2017_12_10_FINAL_TO_POST_resized.pdf>.
- ERTAC Workgroup 'Documentation of ERTAC EGU CONUS 2.3', accessed May 2, 2016, from http://marama.org/images/stories/documents/Documentation_of_ERTAC_EGU_CONUS_2.3.p df>.
- McDill, J and McCusker, S 2018, 'Technical Support Document: Emission Inventory Development for 2011 for the Northeastern U.S. Gamma Version'.
- McDill, J, McCusker, S and Sabo, E 2015, 'Technical Support Document: Emission Inventory Development for 2011, 2018, and 2028 for the Northeastern U.S. Alpha 2 Version', accessed March 7, 2016, from http://marama.org/images/stories/documents/2011-2018-2028_Technical_Support_Docs/TSD%20ALPHA2%20Northeast%20Emission%20Inventory%20for%202011%202018%202028%20DraftFinal%2020151123.pdf

- McDill, J, McCusker, S and Sabo, E 2016, 'Technical Support Document: Emission Inventory Development for 2011 and 2017 for the Northeastern U.S. Beta Version', accessed August 16, 2016, from http://marama.org/images/stories/documents/2011-2017_BETA_REI/TSD%20BETA%20Northeast%20Emission%20Inventory%20for%202011%20201 7%2020160701.pdf>.
- US Energy Information Administration 2014, Annual Energy Outlook 2014 with Projections to 2040, accessed from https://www.eia.gov/forecasts/archive/aeo14/pdf/0383(2014).pdf>.
- US Energy Information Administration 2015, *Annual Energy Outlook 2015 with Projections to 2040*, accessed from https://www.eia.gov/forecasts/archive/aeo15/pdf/0383(2015).pdf.
- US EPA 2017, 'Technical Support Document (TSD) Additional Updates to Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform for the Year 2028'.

Section 9. Emissions Inventories and Processing for 2028 Visibility Control 12 km Future Year Simulation

2028 Visibility Control Inventory Development

The basis for the Regional Haze projected inventory is the 2011 Gamma inventory projected to 2028 discussed in Section 9. Only control programs found in the MANE-VU Intra-RPO (Mid-Atlantic Northeast Visibility Union 2017a), Inter-RPO (Mid-Atlantic Northeast Visibility Union 2017b), and Federal Asks (Mid-Atlantic Northeast Visibility Union 2017c), were modeled as control strategies since this was considered to be a more conservative approach to modeling reasonable progress goals. Control programs were applied to this inventory, in particular the following sectors:

- EGUs
- Non-ERTAC IPM EGUs
- Non-EGU Point
- Non-Point

The following sections desribe how each ask was included in the control inventory for photochemical modeling.

Intra-RPO/Inter-RPO Ask 1

EGUs with a nameplate capacity larger than or equal to 25 MW with already installed NOx and/or SO2 controls - ensure the most effective use of control technologies on a year-round basis to consistently minimize emissions of haze precursors, or obtain equivalent emissions reductions

The control case was taken directly from the projections completed for "Impact of Wintertime SCR/SNCR Optimization on Visibility Impairing Nitrate Precursor Emissions" (Mid-Atlantic Northeast Visibility Union 20 November 2017). There were no expectations of a change in SO_2 emissions, so only NO_x emissions were controlled. Details on projections can be found in the paper and the ERTAC input files for this run were be updated to incorporate the other modeling necessary to complete for the ask.

Intra-RPO/Inter-RPO Ask 2

Emissions sources modeled by MANE-VU that have the potential for 3.0 Mm⁻¹ or greater visibility impacts at any MANE-VU Class I area, as identified by MANE-VU contribution analyses - perform a four-factor analysis for reasonable installation or upgrade to emission controls

36 stacks were found to impair visibility by 3Mm⁻¹ or more based on CALPUFF modeling and are subject to the Ask (Mid-Atlantic Northeast Visibility Union 4 April 2017). 22 of these are in MANE-VU States and the remaining 14 are outside of the region. 30 of the stacks are in ERTAC and were projected using the ERTAC process; the remaining 6 are non-EGU sources and were projected using EMF.

ERTAC Sources

All of the units at six stacks and one unit at another stack (see Table 9-1) were found to have been retired, leaving 30 stacks that will have to have emission reductions applied.

State	Facility Name	ORIS ID	Unit IDs	Max Ext.	ERTAC?	Retirement Date
MA	Brayton Point	1619	4	4.3	Y	1/1/2017
NJ	B L England	2378	2,3	5.6	Y	1/1/2020
KY	Big Sandy	1353	BSU2 (BSU1 is active)	3.5	Y	1/1/2015
MI	St. Clair	1743	1,2,3,4,6	3.1	Y	1/1/2022
ОН	Muskingum River	2872	5	7.7	Y	6/1/2015
ОН	Muskingum River	2872	1,2,3,4	4.4	Y	6/1/2015
VA	Yorktown Power Station	3809	1,2	7	Y	5/1/2017
WV	Kammer	3947	1,2,3	3.2	Y	6/1/2015

Model units were used to define the rates to utilize for units identified in Ask 2 to reduce their contribution, which will be referred to as the model unit emission rates.

Model units were defined as units whose maximum impact on visibility was less than 1 Mm⁻¹. 1 Mm⁻¹ was chosen as to maintain a buffer between the ask level of 3 Mm⁻¹ and the "modeling units".

To begin development of the model unit emission rates we relied on Appendix B.3 and Appendix F of the 2016 MANE-VU Source Contribution Modeling Report (Mid-Atlantic Northeast Visibility Union 4 April 2017) and data collected on individual EGUs (Mid-Atlantic Northeast Visibility Union 2017d). These three data sets were all joined based on a one-to-one relationship using CAMD identifiers and were also linked to impairment values from CALPUFF modeling and other pertinent EGU attributes including retirement date estimations, fuel switch year, primary fuel type, and CAMD unit type. This resulted in 217 units. Units that lacked matches between the datasets were also determined.

First, units were eliminated if the CALPUFF results showed that they impaired visibility by greater than 1 Mm^{-1} . Filters were created looking at fuel type (coal, oil, gas) and two geographies: (1) all MANE-VU states and states with units in Ask 2 and (2) all MANE-VU States and states included in the Inter-RPO consultation. The former filter was needed so that the model emission rate could be applied to a unit burning a similar fuel. The latter was needed so the best determination could be made as to what distance away should model units be since units that are further away may be emitting at a higher emission rate than what is achievable, but are not impairing visibility nearly as much due to the distance from the source. Average emission rates were calculated for SO₂ and NO_x and found in Table 9-2.

Geography	Primary Fuel Type	SO ₂	NOx
All MANE-VU states and states with	Coal	1635.47	1106.74
units in Ask 2	Oil	367.25	384.889
All MANE-VU states and states included	Coal	1542.61	626.25
in the Inter-RPO consultation	Oil	367.25	193.34

Table 9-2: SO₂ and NO_x Model Unit Emission Rates (lb. /hour) for coal and oil-fired EGUs

The Technical Support Committee chose to use the geography of the MANE-VU states and states with units in the Ask for determining model unit emission rates in terms of lbs. /hour. These rates were then converted to a rate in terms of lbs. /MMBtu to later be compared to already projected emission rates in ERTAC using the following formula:

$$Emission Rate \left(\frac{lbs}{MMBtu}\right) = \frac{Generation Capacity (MW) * Emission Rate \left(\frac{lbs}{hour}\right) * 1000}{Ertac Heat Rate \left(\frac{btu}{kw - hr}\right)}$$

After unit specific emission rates were calculated, a search of the control file that included Ask 1, Ask 3, and Ask 5 was completed for any units that needed the model unit emission rate applied. Any entries in the control file that needed its emission rate adjusted were then removed, which resulted in a control file with 2850 entries. Then entries with the model unit emission rates were appended to the control file which added 31 entries (note some units have several entries in the control file). Additionally, the emission rate for Brunner Island (ORISPL Code - 3140) in PA was updated to reflect an emission rate of 0.12 lb. NO_X/MMBtu annually and 0.14 lb. SO₂ MMBtu during non-ozone season for this analysis, which was due to a consent decree that occurred after ERTAC v. 2.7 was finalized. A list of the altered emission rates is in Table 9-3 and the full control file can be obtained upon request.

Pollutant	ORISPL	Unit	Facility Name	State	ERTAC	2028 Projected Average Emission Rates			
	Code	ID			Unit Type	Base Case	Rate from Ask 1, 3, or 5	Model Unit	Applied ER in Ask 2
NOx	1507	4	William F Wyman	ME	Oil	0.1593		0.0612	0.0612
NOx	1599	1	Canal Station	MA	Oil	0.0821		0.0706	0.0706
NOx	2836	12	Avon Lake Power Plant	OH	Coal	0.2724	0.2842	0.1832	0.1832
NOx	3140	3	Brunner Island	PA	Coal	0.1684	0.3	0.149	0.12
NOx	3809	3	Yorktown Power Station	VA	Oil	0.2318		0.0432	0.0432
NOx	6034	1	Belle River	MI	Coal	0.2111		0.1366	0.1366
NOx	6034	2	Belle River	MI	Coal	0.2123		0.1333	0.1333
NOx	6166	MB1	Rockport	IN	Coal	0.1088	0.15	0.0813	0.0813
NOx	6166	MB2	Rockport	IN	Coal	0.0959	0.12	0.0826	0.0826
SO ₂	1507	4	William F Wyman	ME	Oil	0.52	0.52	0.0584	0.0584
SO ₂	1554	3	Herbert A Wagner*	MD	Coal	1.0526		0.5969	0.5969
SO2	1599	1	Canal Station	MA	Oil	0.396	0.3785	0.0674	0.0674
SO ₂	2836	12	Avon Lake Power Plant	OH	Coal	1.59	1.59	0.2708	0.2708
SO ₂	3122	3	Homer City	PA	Coal	0.2326		0.2253	0.2253
SO ₂	3136	1	Keystone	PA	Coal	0.8629		0.1888	0.1888
SO ₂	3136	2	Keystone	PA	Coal	0.8187		0.1842	0.1842
SO2	3140	3	Brunner Island	PA	Coal	0.1337	0.39	0.2201	0.14
SO ₂	3149	1	Montour	PA	Coal	0.4164		0.2215	0.2215
SO ₂	3149	2	Montour	PA	Coal	0.4343		0.2215	0.2215
SO2	3809	3	Yorktown Power Station	VA	Oil	0.7285	0.525	0.0412	0.0412
SO ₂	6034	1	Belle River	MI	Coal	0.5732		0.2019	0.2019
SO2	6034	2	Belle River	MI	Coal	0.5625		0.197	0.197
SO ₂	6166	MB1	Rockport	IN	Coal	0.3491		0.1202	0.1202
SO ₂	6166	MB2	Rockport	IN	Coal	0.3513		0.1221	0.1221
SO ₂	8102	1	Gen J M Gavin	ОН	Coal	0.3731		0.112	0.112
SO ₂	8102	2	Gen J M Gavin	OH	Coal	0.35		0.1121	0.1121

Table 9-3: Projected model emission rate, 2028 base and control case emission rates applied to EGUs subject to Ask 2

* It should be noted that future emissions at Hebert A Wagner are indeterminate because of the SO₂ nonattainment area status

Non-EGU Sources

In the case of non-EGU sources all of the sources that were modeled to not meet the Ask had some type of change of operation planned or implemented following the base year of 2011 intended to meet the Ask. As a result, the approach was taken to elicit feedback from the individual states concerning the appropriate emission rate to use in the control scenario. The units in Maine were found to be lowering their emissions due to low sulfur fuel oil rules in the 2028 base case projections and no additional reductions were included. The units in Maryland and New York were either switching to natural gas or installing scrubbers, but had not included these reductions in the base case inventories. 2028 emissions for SO₂ and NO_x were then used to calculate control efficiencies to apply to the units in Maryland and New York and the control efficiencies are shown in Table 9-4. These control efficiencies were then included in a control packet run through EMF that can be obtained upon request.

Table 9-4: 2028 Base Case Projections and Control Efficiencies (CEFF) for non-EGU sources subject to Ask 2

State	Facility Name	Unit ID	SO₂ CEFF	NO _x CEFF
MD	Luke Paper	18	56.4	56.4
MD	Luke Paper	19	22.7	50.3
ME	Jackson Laboratory		0	0
ME	Woodland Pulp LLC		0	0
NY	Finch Paper LLC	12	20	20
NY	Lafarge Building Materials Inc.	43101	20	53.8

Intra-RPO/Inter-RPO Ask 3

Each state that has not yet fully adopted an ultra-low sulfur fuel oil standard as requested by MANE-VU in 2007 - pursue this standard as expeditiously as possible and before 2028, depending on supply availability, where the standards are as follows:

- a. distillate oil to 0.0015% sulfur by weight (15 ppm),
- b. #4 residual oil within a range of 0.25 to 0.5% sulfur by weight,
- c. #6 residual oil within a range of 0.3 to 0.5% sulfur by weight

ERTAC Sources

To model oil-fired EGUs in the ERTAC system control entries were developed and incorporated in the control file that was created to model HEDD units. Only changes to SO_2 emissions as the result of switching to low sulfur fuel oil were modeled. All states in MANE-VU and all of the upwind states included in the Inter-RPO consultation had emission rates evaluated in their units.

The following steps were undertaken to calculate default emission rates that would be modeled for units to meet the low sulfur fuel oil ask. First, to account for the conversion of sulfur to SO_2 , the ratio of the molecular weight of sulfur to SO_2 was estimated using the following formula:

MW of S = 32MW of O = 16 $MW of SO_2 = 32 + (2*16) = 64$ $Conversion of S to SO_2 = 64/32 = 2$ Then to calculate the emission rate in lb. /MMBtu for 15 ppm distillate oil the following calculations were conducted:

15 ppm could be equal to 15 lb. of S per 1,000,000 lb. of distillate oil Density of distillate oil = 7.05 lb. /gal Heating value of distillate oil = 140,000 Btu/gal (15 lb. S/1,000,000 lb. distillate) x (7.05 lb. /gal) x (1 gal/140,000 Btu) x (1,000,000 Btu/1 MMBtu) x 2 = 0.0015 lb. /MMBtu

Then to calculate the emission rate in lb. /MMBtu for 0.5% by weight residual oil the following calculations were conducted:

0.5% S by weight = 5,000 ppm 5,000 ppm could be equal to 5000 lb. of S per 1,000,000 lb. of residual oil Density of residual oil = 7.88 lb. /gal Heating value of residual oil = 150,000 Btu/gal (5,000 lb. S/1,000,000 lb. residual) x (7.88 lb. /gal) x (1 gal/150,000 Btu) x (1,000,000 Btu/1 MMBtu) x 2 = 0.525 lb. /MMBtu

These default emission rates were then compared to emission rates in the annual summary for all of the oil units that had non-zero SO_2 emissions in the ERTAC v2.7 base case 2028 projections. If a unit was labeled as having a primary fuel type of "Residual Oil" or "Pipeline Natural Gas" and in the latter case a secondary fuel type of "RFO" then the projected emission rate was compared to 0.525 lb. /MMBtu. Otherwise it was compared to an emission rate of 0.0015 lb. /MMBtu. In cases where the projected emission rate from the base case was higher than the compared emission rate the compared emission rate was used instead of the projected emission rate from the base case. Additionally, Connecticut and Massachusetts provided emission rates to use instead of either the ERTAC v2.7 base case 2028 projected emission rate or the emission rate calculated to meet the ask and these adjustments are shown in Table 9-5.

Stat	Facility Name	ORIS ID	Unit ID	Unit ID Primary Fuel Second		2028 Annual SO ₂ Emission Rate (lbs./MMBtu)				
е					ary Fuel	ERTAC	Calculated Rate	State Supplied		
						Projection	to Meet Ask	Rate		
СТ	Tunnel	557	10	Diesel Oil		0.102	0.0015	0.1		
СТ	Norwich	581	TRBINE	Diesel Oil		0.0086	0.0015	0.008		
СТ	Bridgeport Harbor Station	568	BHB4	Other Oil		0.074	0.0015	0.016		
MA	West Springfield	1642	3	Residual Oil	NG	0.379988	No Change	0.093325873		
MA	Mystic	1588	7	Pipeline Gas	RFO	0.035589	No Change	0.268299208		
MA	Canal Station	1599	2	Residual Oil	NG	0.393061	No Change	0.215390672		
MA	Cleary Flood	1682	8	Residual Oil	DFO	0.56	0.525	0.56		
MA	Canal Station	1599	1	Residual Oil		0.396011	No Change	0.378526538		

Table 9-5: State supplied adjustments to oil units modeled to meet the low sulfur fuel oil ask using ERTAC

It was also discovered as part of this process that 30 units (Table 9-6), all within MANE-VU, had future year heat input and NO_x emissions, but in both the base year and future year had no SO_2 emissions. This is likely due to a lack of a regulatory requirement to report SO_2 data to CAMD. However, since SO_2 emissions were not included in ERTAC for the base year for these units, less accurate results would occur through the modeling process if the emissions were included in the future year for these units, so the SO_2 emissions were left at 0 for these units.

State	Facility Name	ORIS ID	Unit ID	Primary Fuel	FY Heat Input (MMBtu)
DE	West Substation	597	10	Diesel Oil	1,095.53
DE	Indian River	594	10	Diesel Oil	135.31
DE	Edge Moor	593	10	Diesel Oil	480.74
DE	Delaware City	592	10	Diesel Oil	215.97
MA	Framingham Station	1586	FJ-2	Diesel Oil	52.89
MA	Medway Station	1592	J3T1	Diesel Oil	240.99
MA	Medway Station	1592	J2T2	Diesel Oil	199.87
MA	Medway Station	1592	J2T1	Diesel Oil	266.36
MA	Medway Station	1592	J1T2	Diesel Oil	281.86
MA	Medway Station	1592	J1T1	Diesel Oil	134.72
MA	New Boston	1589	NBJ-1	Diesel Oil	53.40
MA	Medway Station	1592	J3T2	Diesel Oil	205.92
MA	Framingham Station	1586	FJ-3	Diesel Oil	69.78
MA	West Springfield	1642	10	Diesel Oil	283.61
MA	Framingham Station	1586	FJ-1	Diesel Oil	64.96
MA	South Boston Combustion Turbines	10176	В	Other Oil	362.65
MA	Mystic	1588	MJ-1	Diesel Oil	9.60
MA	South Boston Combustion Turbines	10176	A	Other Oil	49.23
MA	Doreen	1631	10	Diesel Oil	30.84
MA	Woodland Road	1643	10	Diesel Oil	49.46
MA	Stony Brook	6081	001	Diesel Oil	11,745.66
MA	Stony Brook	6081	002	Diesel Oil	22,296.81
MA	Stony Brook	6081	003	Diesel Oil	9,184.17
MA	Stony Brook	6081	004	Diesel Oil	592.34
MA	Stony Brook	6081	005	Diesel Oil	479.80
MA	Kendall Square	1595	S6	Diesel Oil	176.59
NY	Hudson Avenue	2496	CT0004	Diesel Oil	4,095.00
NY	Hudson Avenue	2496	CT0005	Diesel Oil	3,990.00
NY	Glenwood Landing Energy Center	7869	UGT011	Oil	271.63
PA	Veolia Energy Philadelphia - Edison Sta.	880006	1	Residual Oil	22,748.09

Table 9-6: Oil Units in ERTAC lacking Base Year and Future Year (FY) SO	O2 emissions, but with future year heat input
---	---

To develop the control file first a search of the control file that included Ask 1 and Ask 5 was completed for any units that needed an adjusted emission rate. Any entries in the control file that needed their emission rate adjusted were then removed, which totaled 2,868. Then new emission rates were appended to the control file. The new entries to the control file are available upon request.

Non-EGU Sources

EMF was employed to apply controls to the non-point, non-EGU point, and non-ERTAC IPM point files to model the impact of low sulfur fuel oil rules that would be implemented by 2028 to meet the ask. To perform this task a control packet was developed to apply using EMF.

One issue at hand is that the reductions associated with low sulfur fuel oil rules need to be added on to other control factors, since for instance an oil-fired unit could have a scrubber for SO_2 and also switch to burning low sulfur fuel oil, resulting in two separate "controls." To further complicate the development of the control packet, low sulfur fuel oil controls were already applied in the base case projections so different FIPS will have to be treated differently.

This resulted in three different applications. Connecticut, Delaware, Maine, Massachusetts, New Jersey, New York, Rhode Island, Vermont, and Philadelphia County, PA had no reductions applied since they were already meeting the requirements of the ask and were controlled in the inventory. The remaining counties in Pennsylvania had a control packet with adjusted control

efficiencies applied (to be discussed later) for #2 distillate oil and no additional reductions since they were already meeting "the Ask" for #4 and #6 residual oil and were controlled in the inventory. The remaining states either were meeting "the Ask" through on the books rules though had not included the reductions in the inventory or did not have on the books rules that met "the Ask." In both cases they had a default control packet applied.

In order to develop control efficiency estimates for the default control packet the control efficiencies in the packet for existing rules were used as the starting point. The maximum reduction for a pollutant and SCC was chosen as the default control efficiency. Reductions associated with going beyond .25% sulfur by weight for #4 fuel oil were not considered. The control efficiencies determined through this process from the existing control packets are in Table 9-7. The control packet was also configured so each control would be an add-on control ("A" flag), have a rule effectiveness and penetration of 100, and have a start date of 12/31/2027.

Distillate or Residual?	SCC	Pollutant	Control Efficiency	Distillate or Residual?	SCC	Pollutant	Control Efficiency
R	10100401	PM10-PRI	33	R	20200501	SO ₂	77.3
R	10100401	PM25- PRI	33	D	20200901	SO ₂	99.5
R	10100401	SO ₂	77.3	D	20200902	NO _x	1
R	10100404	PM ₁₀ -PRI	33	D	20200902	SO ₂	99.5
R	10100404	PM25- PRI	33	D	20300101	NO _x	1
R	10100404	SO ₂	77.3	D	20300101	SO ₂	99.5
D	10100501	NOx	22	D	20300102	SO ₂	99.5
D	10100501	SO ₂	99.5	D	20300105	NOx	1
R	10200401	PM ₁₀ -PRI	33	D	20300105	SO ₂	99.3
R	10200401	PM25- PRI	33	D	20300106	NOx	1
R	10200401	SO ₂	77.3	D	20300106	SO ₂	99.5
R	10200402	PM ₁₀ -PRI	33	D	20300107	NOx	1
R	10200402	PM25- PRI	33	D	20300107	SO ₂	99.5
R	10200402	SO ₂	77.3	D	20300109	SO ₂	99.3
R	10200403	PM ₁₀ -PRI	33	D	20300901	SO ₂	99.5
R	10200403	PM25- PRI	33	D	20400302	SO2	99.3
R	10200403	SO ₂	77.3	D	20400303	SO ₂	99.5
R	10200404	SO ₂	75	D	20400403	NO _x	1
R	10200405	SO ₂	75	D	20400403	SO ₂	99.5
D	10200501	NOx	22	D	20400407	NOx	1
D	10200501	SO ₂	99.5	D	20400407	SO ₂	99.3
D	10200502	NO _x	22	D	30190001	NO _x	22
D	10200502	SO ₂	99.5	D	30190001	SO ₂	99.5
D	10200503	NO _x	22	D	30190011	NO _x	22
D	10200503	SO ₂	99.5	D	30190011	SO ₂	99.5
R	10200504	SO ₂	77.3	D	30290001	NO _x	22
D	10200505	NO _x	22	D	30290001	SO ₂	99.5
D	10200505	SO ₂	99.5	R	30290002	SO ₂	75
R	10300401	PM ₁₀ -PRI	33	D	30390001	NO _x	22
R	10300401	PM25- PRI	33	D	30390001	SO ₂	99.5
R	10300401	SO ₂	77.3	D	30490031	NOx	22
R	10300402	SO ₂	77.3	D	30490031	SO ₂	99.5
R	10300403	SO ₂	50	D	30590001	NOx	22
D	10300501	NO _x	22	D	30590001	SO ₂	99.5

Table 9-7: Control Efficiencies for each pollutant and SCC in default control packet

Distillate or	SCC	Pollutant	Control	Distillate or Residual2	SCC	Pollutant	Control
D	10300501	SO ₂	99.5	R	30590002	SO ₂	77.3
D	10300502	NO _v	22	R	30600103	PM ₁₀ -PRI	33
D	10300502	SO ₂	99.5	R	30600103	PM25-PRI	33
D	10300503	NO ₂	22	R	30600103	SO2	75
D	10300503	SO ₂	99.5	D	31000411	NO ₂	22
R	10300504	SO ₂	77.3	D	31000411	SO ₂	99.5
D	10500304	NO ₂	22	B	39000403	<u> </u>	77.3
D	10500105	SO ₂	99.5	R	39000409	SO ₂	66.7
D	10500105	NO ₂	22	D	39000502	NO ₂	22
D	10500205	SO ₂	99.5	D	39000502	SO ₂	99.5
D	20100101	<u>so</u>	99.5	D	39000502	NO ₂	22
D	20100101	NO ₂	1	D	39000503	SO ₂	99.5
D	20100102	NO _X	00.5	D	2000503	NO.	22.5
D	20100102	NO ₂	1	D	39000599	SO ₂	99.5
D	20100105	SO-	99.5	D	39900501	NO.	22
D	20100105	NO.	1	D	39900501	SO.	99.5
D	20100100	NO _X	00.5	D	40000011	NO	22.5
	20100100	30 ₂	99.5	D	49090011	NO _X	00.5
D	20100107	NO _X	00 5	D	2102004000	30 ₂	39.5
D	20100107	30 ₂	99.5	D	2102004000	NO _X	00.5
	20100108	30 ₂	99.5	D	2102004000	30 ₂	39.5
	20100109	SO ₂	99.5	D	2102004001	NO _X	22
	20100901	SU ₂	99.5		2102004001	SU ₂	99.5
	20100902	NO _X	1	D	2102004002	NO _X	1
D	20100902	SO ₂	99.5	D	2102004002		99.5
	20100908	SO ₂	99.5	K D	2102005000		33
D	20100909	SO ₂	99.5	K D	2102005000	PIVIZ5-PRI	33
	20200101	SU ₂	99.5	R	2102005000	SU ₂	//.3
D	20200102	NO _X	1	D	2102011000	NO _X	22
	20200102	SU ₂	99.5	D	2102011000	30 ₂	99.5
D	20200103	NU _X	1	D	2103004000	NOx	22
D	20200103	SU ₂	99.5	D	2103004000	SU ₂	99.5
D	20200104	NUx	1	D	2103004001	NOx	22
D	20200104	SU ₂	99.5	D	2103004001	SU ₂	99.5
D	20200105	NU _x	1	D	2103004002	NO _X	1
D	20200105	SO ₂	99.5	D	2103004002		99.5
D	20200106	NU _x	1	R	2103005000	PIVI ₁₀ -PRI	33
D	20200106	SO ₂	99.5	R	2103005000	PIVI25-PRI	33
D	20200107	NOx	1	R	2103005000	SO ₂	//.3
0	20200107	SU ₂	99.5	D	2103011000	NOx	22
D	20200108	NUX	1	D	2103011000	SO ₂	99.5
D	20200108	SO ₂	99.5	D	2104004000	NO _x	22
D	20200401	NOx	1	D	2104004000	SO ₂	99.5
D	20200401	SO ₂	99.5	D	2104011000	NOx	22
D	20200402	NO _X	1	D	2104011000	SO ₂	99.5
D	20200402	SO ₂	99.5				

Following the development of the default control efficiency packet, adjusted control efficiencies were calculated for any entries in the base case control packet for the state of Pennsylvania or any of its counties, excepting Philadelphia County (FIPS: 42101). Only SCCs corresponding to the use of distillate oil were adjusted (as denoted in Table 9-77 with a "D"). The control efficiency applied in the base case was adjusted by the default control efficiency in Table 9-77 using the following formula:

$$100 * (1 - \frac{100 - ControllEfficiencyOld}{100 - ControlEfficiencyNew})$$

The control packets were then merged and applied using the EMF system prior to applying the control packets for Ask 2 and Ask 5.

Intra-RPO/Inter-RPO Ask 4

EGUs and other large point emission sources larger than 250 MMBTU per hour heat input that have switched operations to lower emitting fuels - pursue updating permits, enforceable agreements, and/or rules to lock-in lower emission rates for SO2, NOx, and PM

Modeling was not needed for this since the purpose of this ask is to ensure that emissions already in the future base case are not slid back on and the emissions that are occurring should already be in the future base case.

Intra-RPO Ask 5

Where emission rules have not been adopted, control NOx emissions for peaking combustion turbines that have the potential to operate on high electric demand days by:

a. Striving to meet NOx emissions standard of no greater than 25 ppm at 15% O2 for natural gas and 42 ppm at 15% O2 for fuel oil but at a minimum meet NOx emissions standard of no greater than 43 ppm at 15% O2 for natural gas and 96 ppm at 15% O2 for fuel oil, or

b. Performing a four-factor analysis for reasonable installation or upgrade to emission controls, or

c. Obtaining equivalent alternative emissions reductions on high electric demand days

ERTAC Sources

To model HEDD Units in the ERTAC system control entries were developed and incorporated in the control file that was created to model HEDD units. Only changes to NO_x emissions as the result of meeting "the Ask" were modeled. The ask included two emission rates each for gas-fired and oil-fired HEDD units, one that must be met and one that should be strived to be met. The former was used in modeling. All states in MANE-VU had emission rates evaluated in their units.

To determine which units should be modeled as HEDD units, the SCCs found in the SMOKE ready post processed ERTAC ff10 files for the 2011 base case were compared to the list of SCCs in Table 9-8.

SCC	Level One	Level Two	Level Three	Level Four
20100101	Internal Combustion Engines	Electric Generation	Distillate Oil (Diesel)	Turbine
20100109	Internal Combustion Engines	Electric Generation	Distillate Oil (Diesel)	Turbine: Exhaust
20100201	Internal Combustion Engines	Electric Generation	Natural Gas	Turbine
20100209	Internal Combustion Engines	Electric Generation	Natural Gas	Turbine: Exhaust
20100901	Internal Combustion Engines	Electric Generation	Kerosene/Naphtha (Jet Fuel)	Turbine
20100909	Internal Combustion Engines	Electric Generation	Kerosene/Naphtha (Jet Fuel)	Turbine: Exhaust
20101302	Internal Combustion Engines	Electric Generation	Liquid Waste	Waste Oil - Turbine

Table 9-8: SCCs considered to be potential HEDD units in ERTAC

The units were then evaluated based on nameplate capacity (found in the ERTAC UAF), 2014-2016 average operating hours (drawn from CAMD), and whether the unit went online after May

1, 2007 (found in the ERTAC UAF). This results in the removal of 162 units as shown in Table 9-9 with the reason for the removal in one of the three rightmost columns (note units later reintroduced as HEDD units are not shown).

GT Bridgeport Energy 55042 BE1 CC Gas 6,670.82 Image of the second	State	Facility Name	ORIS ID	Unit ID	ERTAC Unit Type	Avg. Op. Hrs. 2014- 16	Size (MW)	Online Yr.
Bridgeport Energy 5542 8E2 C Cas 6,670.82 P Cos Cob 542 13 Oil 2008 2008 Cos Cob 542 14 Oil 2008 2008 Kleen Energy Systems Project 56798 U2 CC Gas 6,686.25 2011 Middletown 562 12 SC Gas 2011 2011 Middletown 562 15 SC Gas 2011 2007 Devon 544 15 SC Gas 2007 2007 Devon 544 15 SC Gas 2010 2007 Devon 544 15 SC Gas 2010 2010 Devon 544 16 SC Gas 2010 2010 Ueron 544 16 SC Gas 2010 2010 Ueron 544 18 SC Gas 2010 2010 Lake Road Generating Company 55149 UG3 CC Gas 6,830.47 2010	ст	Bridgeport Energy	55042	BE1	CC Gas	6.670.82	(,	
Cos Cob 542 13 Oil Dim Dim 2008 Cos Cob 542 14 Oil 0il 2008 Kleen Energy Systems Project 56798 U2 CC Gas 7,289.69 0 Middletown 562 12 SC Gas 7,289.69 2011 Middletown 562 13 SC Gas 2011 2011 Middletown 562 15 SC Gas 2011 2011 Middletown 562 16 SC Gas 2007 2007 Devon 544 15 SC Gas 2010 2007 Devon 544 17 SC Gas 6,838.12 2010 Devon 544 18 SC Gas 6,830.47 2010 Lake Road Generating Company LLC 55126 CT02 CC Gas 6,880.48 2 Lake Road Generating Company 55149 LRG2 CC Gas 7,271.15 2 Lake Road Generating Company 55149 LRG2 <td>-</td> <td>Bridgeport Energy</td> <td>55042</td> <td>BE2</td> <td>CC Gas</td> <td>6.670.82</td> <td></td> <td></td>	-	Bridgeport Energy	55042	BE2	CC Gas	6.670.82		
Cas Cob 542 14 Oli Cas Co 2008 Kleen Energy Systems Project 56798 U2 CC Gas 7,289.69 — Middletown 562 12 SC Gas 7,289.69 — 2011 Middletown 562 13 SC Gas — 2011 Middletown 562 14 SC Gas — 2011 Middletown 562 15 SC Gas — 2011 Alfred L Pierce Generating Sta. 6635 AP-1 SC Gas — 2010 Devon 544 16 SC Gas — 2010 2010 Devon 544 18 SC Gas — 2010 2010 Devon 544 18 SC Gas 6,838.12 — 2010 Lake Road Generating Company LLC S126 CT01 CC Gas 6,838.12 — 2009 Lake Road Generating Company S149 LRG2 CC Gas 7,271.15 — —<		Cos Cob	542	13	Oil			2008
Kleen Energy Systems Project \$6798 U1 CC Gas 6,886.25 Middletown \$62 12 CC Gas 7,283.69 2011 Middletown \$62 13 SC Gas 2011 Middletown \$62 14 SC Gas 2011 Middletown \$62 15 SC Gas 2001 Devon \$44 15 SC Gas 2007 Devon \$44 16 SC Gas 2010 Devon \$44 17 SC Gas 2010 Devon \$44 16 SC Gas 2010 Miford Power Company LLC \$5126 CT02 CC Gas \$6,830.47 2007 Lake Road Generating Company \$5149 LRG2 CC Gas \$7,471.43 Lake Road Generating Company \$5149 LRG2 CC Gas \$5,843.00 Hay Road 7153 1 CC		Cos Cob	542	14	Oil			2008
Kleen Energy Systems Project 56798 U2 CC Gas 7,289.69 Image: Comparison of the compa		Kleen Energy Systems Project	56798	U1	CC Gas	6.686.25		
Middletown 562 12 SC Gas 1 2011 Middletown 562 13 SC Gas 2011 Middletown 562 14 SC Gas 2011 Middletown 562 15 SC Gas 2011 Middletown 562 15 SC Gas 2011 Middletown 562 15 SC Gas 2011 Devon 544 15 SC Gas 2010 Devon 544 16 SC Gas 2010 Devon 544 17 SC Gas 6,838.12 2010 Devon 544 16 SC Gas 6,830.47 2009 Lake Road Generating Company SL126 CT02 CC Gas 6,830.47 2010 Lake Road Generating Company SL149 LRG1 CC Gas 5,930.10 201 Lake Road Generating Company SL149 LRG3 CC Gas 5,943.08 201 Lake Road Generating Company SL149 LRG3 <		Kleen Energy Systems Project	56798	U2	CC Gas	7,289.69		
Middletown 562 13 SC Gas Image: Constraint of the state o		Middletown	562	12	SC Gas			2011
Middletown 562 14 SC Gas Image: Constraint of the state o		Middletown	562	13	SC Gas			2011
Middletown 562 15 SC Gas Image: Constraint of the state o		Middletown	562	14	SC Gas			2011
Alfred L Pierce Generating Sta. 6635 AP-1 SC Gas Image: Constraint of the state of		Middletown	562	15	SC Gas			2011
Devon 544 15 SC Gas Participant 2010 Devon 544 16 SC Gas 2010 Devon 544 17 SC Gas 2010 Devon 544 18 SC Gas 2010 Devon 544 18 SC Gas 2010 Devon 544 18 SC Gas 6,838,12 2010 Mifford Power Company LLC 55126 CT02 CC Gas 6,830,47 2009 Lake Road Generating Company 55149 LRG2 CC Gas 7,478,43 2009 Lake Road Generating Company 55149 LRG2 CC Gas 5,984.00 12.5 Hay Road 7153 1 CC Gas 5,984.00 1 12.5 Hay Road 7153 5 Oil 4,605.43 1 1 Hay Road 7153 6 Oil 4,601.18 1 1 Hay Road 7153 7 Oil 4,601.18 1 <td< td=""><td></td><td>Alfred L Pierce Generating Sta.</td><td>6635</td><td>AP-1</td><td>SC Gas</td><td></td><td></td><td>2007</td></td<>		Alfred L Pierce Generating Sta.	6635	AP-1	SC Gas			2007
Devon 544 16 SC Gas O 2010 Devon 544 17 SC Gas 2010 Devon 544 18 SC Gas 2010 Milford Power Company LLC 55126 CT01 CC Gas 6,838.12 2009 Waterbury Generating Company 55149 LRG1 CC Gas 6,830.47 2009 Lake Road Generating Company 55149 LRG2 CC Gas 7,478.43 2009 Lake Road Generating Company 55149 LRG2 CC Gas 5,984.00 20.9 Hay Road 7153 ***3 CC Gas 5,984.00 20.9 Hay Road 7153 2 CC Gas 5,984.00 20.9 Hay Road 7153 5 Oil 4,650.13 20.9 Hay Road 7153 7 Oil 4,686.43 20.9 ME Westbrook Energy Center 55294 1 CC Gas 5,000.00 20.9 Androscoggin Energy 55031 CT03		Devon	544	15	SC Gas			2010
Devon 544 17 SC Gas Devon 2010 Devon 544 18 SC Gas 0 2010 Milford Power Company LLC 55126 CT01 CC Gas 6,838.12 2009 Lake Road Generating Company 55149 LRG1 CC Gas 6,830.47 2009 Lake Road Generating Company 55149 LRG2 CC Gas 7,271.15 1 Lake Road Generating Company 55149 LRG3 CC Gas 7,271.15 1 1 Hay Road 7153 **3 CC Gas 5,984.00 1		Devon	544	16	SC Gas			2010
Devon 544 18 SC Gas 6,838.12 2010 Milford Power Company LLC 55126 CT01 CC Gas 6,838.12 Waterbury Generation 5629 10 SC Gas 6,830.47 2009 Lake Road Generating Company 55149 LRG1 CC Gas 6,830.47 Lake Road Generating Company 55149 LRG2 CC Gas 7,478.43 Lake Road Generating Company 55149 LRG2 CC Gas 5,984.00 <td< td=""><td></td><td>Devon</td><td>544</td><td>17</td><td>SC Gas</td><td></td><td></td><td>2010</td></td<>		Devon	544	17	SC Gas			2010
Milford Power Company LLC 55126 CT01 CC Gas 6,838.12 Image: Company LLC Waterbury Generation 55629 CO CC Gas 6,880.48 2009 Lake Road Generating Company 55149 LRG1 CC Gas 7,271.15 1 Lake Road Generating Company 55149 LRG3 CC Gas 7,271.5 1 Bake Road Generating Company 55149 LRG3 CC Gas 6,063.60 1 1 Hay Road 7153 **3 CC Gas 5,984.00 1		Devon	544	18	SC Gas			2010
Milford Power Company LLC 55126 CT02 CC Gas 6,880.48 2009 Lake Road Generating Company 55149 LRG1 CC Gas 6,830.47 2009 Lake Road Generating Company 55149 LRG1 CC Gas 7,721.15 2009 Lake Road Generating Company 55149 LRG2 CC Gas 7,774.83 2009 Hay Road 7153 **3 CC Gas 6,063.60 2009 Hay Road 7153 1 CC Gas 5,984.00 2009 Hay Road 7153 5 Oil 4,501.71 2009 Hay Road 7153 5 Oil 4,601.83 2009 Hay Road 7153 6 Oil 4,601.18 2009 Westbrook Energy Center 55294 1 CC Gas 5,900.00 2009 Androscoggin Energy 55031 CT01 SC Gas 1,916.00 2009 Androscoggin Energy 55031 CT02 SC Gas 2,071.17 2009		Milford Power Company LLC	55126	CT01	CC Gas	6.838.12		
Waterbury Generation 56629 10 SC Gas 6,800.47 2009 Lake Road Generating Company 55149 LRG2 CC Gas 6,800.47 Lake Road Generating Company 55149 LRG2 CC Gas 7,271.15 Lake Road Generating Company 55149 LRG3 CC Gas 7,478.43 DE Edge Moor 593 10 Oil 12.5 Hay Road 7153 **3 CC Gas 5,984.00 Hay Road 7153 5 Oil 4,501.71 <		Milford Power Company LLC	55126	CT02	CC Gas	6.880.48		
Lake Road Generating Company 55149 LRG1 CC Gas 6,830.47 Image: CC Gas 7,271.15 Lake Road Generating Company 55149 LRG2 CC Gas 7,271.15 Image: CC Gas 7,478.43 Image: CC Gas 7,478.43 Image: CC Gas 7,478.43 Image: CC Gas 6,063.60 Image: CC Gas 6,063.60 Image: CC Gas 5,984.00 Image: CC Gas 5,900.00 Image: CC Gas 1,916.00 Image: CC Gas 1,916.00 Image: CC Gas 1,916.00 Image: CC Ga		Waterbury Generation	56629	10	SC Gas			2009
Lake Road Generating Company 55149 LRG2 CC Gas 7,271.15 Image: Company Lake Road Generating Company 55149 LRG3 CC Gas 7,478.43 Image: Company 5149 LRG3 CC Gas 7,478.43 Image: Company 12.5 Image: Company 5149 LRG3 CC Gas 6,063.60 Image: Company 12.5 Image: Company 12		Lake Road Generating Company	55149	LRG1	CC Gas	6.830.47		
Lake Road Generating Company 55149 LRG3 CC Gas 7,478.43 Image: Company DE Edge Moor 593 10 Oil 12.5 Hay Road 7153 **3 CC Gas 6,063.60 Image: Company Hay Road 7153 1 CC Gas 5,984.00 Image: Company Hay Road 7153 2 CC Gas 5,984.00 Image: Company Hay Road 7153 5 Oil 4,585.43 Image: Company Image: Company Hay Road 7153 5 Oil 4,686.43 Image: Company		Lake Road Generating Company	55149	LRG2	CC Gas	7.271.15		
DE Edge Moor 593 10 Oil 12.5 Hay Road 7153 **3 CC Gas 6,063.60 Image: CC Gas 6,063.60 Hay Road 7153 1 CC Gas 5,984.00 Image: CC Gas 5,843.68 Hay Road 7153 2 CC Gas 5,843.68 Image: CC Gas 5,843.68 Hay Road 7153 5 Oil 4,601.18 Image: CC Gas 5,843.68 Hay Road 7153 6 Oil 4,601.18 Image: CC Gas 5,843.68 ME Westbrook Energy Center 55294 1 CC Gas 5,000.00 Image: CC Gas 4,816.00 Androscoggin Energy 55031 CT01 SC Gas 1,916.00 Image: CC Gas 2,967.82 Image: CC Gas 2,967.82 Image: CC Gas 2,071.17 Image: CC Gas 3,275.00 Image: CC Gas 3,275.00 Image: CC Gas 3,275.0		Lake Road Generating Company	55149	LRG3	CC Gas	7.478.43		
Hay Road 7153 ***3 CC Gas 6,063.60 Image: Constraint of the second se	DE	Edge Moor	593	10	Oil	.,	12.5	
Hay Road 7133 1 CC Gas 5,984.00 Hay Road 7153 2 CC Gas 5,843.68 Image: Comparison of the		Hay Road	7153	**3	CC Gas	6.063.60		
Hay Road 7153 2 CC Gas 5,843.68 Hay Road 7153 5 Oil 4,501.71 Image: Comparison of the co		Hay Road	7153	1	CC Gas	5,984.00		
Hay Road T153 5 Oil 4,501.71 Image: Constraint of the second s		Hay Road	7153	2	CC Gas	5.843.68		
Hay Road 7153 6 01 4,686.43 1 Hay Road 7153 7 0il 4,686.43 1 ME Westbrook Energy Center 55294 1 CC Gas 5,000.00 1 Androscoggin Energy 55031 CT01 SC Gas 2,567.82 1 1 Androscoggin Energy 55031 CT02 SC Gas 3,175.75 1 1 Maine Independence Station 55068 1 CC Gas 2,061.16 1		Hay Road	7153	5	Oil	4,501,71		
Hay Road 7153 7 Oil 4,601.18 Image: Content of the state of the st		Hay Road	7153	6	Oil	4.686.43		
ME Westbrook Energy Center 55294 1 CC Gas 5,000.00 Westbrook Energy Center 55294 2 CC Gas 4,816.00 Androscoggin Energy 55031 CT01 SC Gas 2,567.82 Androscoggin Energy 55031 CT02 SC Gas 1,916.00 Androscoggin Energy 55031 CT03 SC Gas 3,175.75 Rumford Power 55100 1 CC Gas 2,071.17 Maine Independence Station 55068 1 CC Gas 5,275.14 Dartmouth Power 52026 2 SC Gas 5,275.00 Berkshire Power 55041 1 CC Gas 5,275.00 Masspower 10726 2 CC Gas 3,754.42 </td <td></td> <td>Hay Road</td> <td>7153</td> <td>7</td> <td>Oil</td> <td>4.601.18</td> <td></td> <td></td>		Hay Road	7153	7	Oil	4.601.18		
Westbrook Energy Center 55294 2 CC Gas 4,816.00 Androscoggin Energy 55031 CT01 SC Gas 2,567.82 Image: Comparison of the comp	ME	Westbrook Energy Center	55294	1	CC Gas	5.000.00		
Androscoggin Energy 55031 CT01 SC Gas 2,567.82 Image: Control of the state of t		Westbrook Energy Center	55294	2	CC Gas	4.816.00		
Androscoggin Energy 55031 CT02 SC Gas 1,916.00 Androscoggin Energy 55031 CT02 SC Gas 3,175.75 Image: Constraint of the second		Androscoggin Energy	55031	 CT01	SC Gas	2.567.82		
Androscoggin Energy 55031 CT03 SC Gas 3,175.75 Image: Constraint of the state o		Androscoggin Energy	55031	CT02	SC Gas	1.916.00		
Rumford Power 55100 1 CC Gas 2,071.17 Image: Comparison of the com		Androscoggin Energy	55031	CT03	SC Gas	3.175.75		
Maine Independence Station 55068 1 CC Gas 2,061.16 Image: CC Gas 5,275.14 Image: CC Gas 5,275.14 Image: CC Gas 5,275.00 Image: CC Gas 5,275.00 Image: CC Gas 5,275.00 Image: CC Gas 5,516.92 Image: CC Gas 3,754.42 Image: CC Gas 3,754.42 Image: CC Gas 3,394.83 Image: CC Gas 14.2 Image: CC Gas 14.2 Image: CC Gas 14.2 Image: CC Gas 14.2 Image: CC Gas 1mage: CC Gas 1mage: CC Gas 3,040.01 Image: CC Gas 1mage: CC Gas		Rumford Power	55100	1	CC Gas	2.071.17		
MA Dartmouth Power 52026 1 CC Gas 5,275.14 Image: Comparison of the		Maine Independence Station	55068	1	CC Gas	2.061.16		
Dartmouth Power 52026 2 SC Gas Image: Constraint of the state of the s	MA	Dartmouth Power	52026	1	CC Gas	5.275.14		
Dighton550261CC Gas5,275.00IBerkshire Power550411CC Gas5,516.92IMasspower107261CC Gas3,754.42IMasspower107262CC Gas3,394.83IFramingham Station1586FJ-1OilI4.2IFramingham Station1586FJ-2OilI4.2IFramingham Station1586FJ-3OilI4.2IFramingham Station1586FJ-3OilI4.2IFramingham Station1586FJ-3OilII4.2Framingham Station1586FJ-3OilII4.2Montgomery L'Energia Power545862CC Gas6,996.95IPartnersIISSIIMystic158881CC Gas3,040.01IIMystic158893CC Gas3,147.39IIMystic158894CC Gas3,101.86IIMystic1588MJ-1OilI4.2IIANP Bellingham Energy Project552111CC Gas5,576.22II		Dartmouth Power	52026	2	SC Gas			2009
Berkshire Power 55041 1 CC Gas 5,516.92 Image: CC Gas 1,754.42 Masspower 10726 1 CC Gas 3,754.42 Image: CC Gas 3,394.83 Masspower 10726 2 CC Gas 3,394.83 Image: CC Gas 3,394.83 Framingham Station 1586 FJ-1 Oil Image: CC Gas 3,394.83 Image: CC Gas 14.2 Framingham Station 1586 FJ-2 Oil Image: CC Gas 14.2 Image: CC Gas Image: CC Gas 6,996.95 Image: CC Gas Image: CC Gas <td< td=""><td></td><td>Dighton</td><td>55026</td><td>1</td><td>CC Gas</td><td>5.275.00</td><td></td><td></td></td<>		Dighton	55026	1	CC Gas	5.275.00		
Masspower107261CC Gas3,754.42Image: constraint of the system of the		Berkshire Power	55041	1	CC Gas	5.516.92		
Masspower 10726 2 CC Gas 3,394.83 Image: constraint of the system of the sys		Masspower	10726	1	CC Gas	3.754.42		
Framingham Station 1586 FJ-1 Oil 14.2 Framingham Station 1586 FJ-2 Oil 14.2 14.2 Framingham Station 1586 FJ-3 Oil 14.2 14.2 Framingham Station 1586 FJ-3 Oil 14.2 14.2 Kendall Square 1595 4 CC Gas 6,996.95 14.2 Montgomery L'Energia Power 54586 2 CC Gas 2008 2008 Partners - - - - 2008 2008 2008 Mystic 1588 81 CC Gas 3,040.01 - - - Mystic 1588 82 CC Gas 3,147.39 - - - Mystic 1588 93 CC Gas 3,299.05 - - - Mystic 1588 94 CC Gas 3,101.86 - - - Mystic 1588 MJ-1 Oil 14.2 <td></td> <td>Masspower</td> <td>10726</td> <td>2</td> <td>CC Gas</td> <td>3.394.83</td> <td></td> <td></td>		Masspower	10726	2	CC Gas	3.394.83		
Framingham Station 1586 FJ-2 Oil 14.2 Framingham Station 1586 FJ-3 Oil 14.2 Framingham Station 1586 FJ-3 Oil 14.2 Kendall Square 1595 4 CC Gas 6,996.95 2008 Montgomery L'Energia Power 54586 2 CC Gas 2008 2008 Partners - - - 2008 2008 2008 Mystic 1588 81 CC Gas 3,040.01 - - Mystic 1588 82 CC Gas 3,147.39 - - Mystic 1588 93 CC Gas 3,299.05 - - Mystic 1588 94 CC Gas 3,101.86 - - Mystic 1588 MJ-1 Oil 14.2 - - ANP Bellingham Energy Project 55211 1 CC Gas 5,576.22 - -		Framingham Station	1586	FJ-1	Oil		14.2	
Framingham Station 1586 FJ-3 Oil 14.2 Kendall Square 1595 4 CC Gas 6,996.95 2008 Montgomery L'Energia Power 54586 2 CC Gas 3,040.01 2008 Mystic 1588 81 CC Gas 3,040.01 Mystic 1588 82 CC Gas 3,147.39 Mystic 1588 93 CC Gas 3,299.05 Mystic 1588 94 CC Gas 3,101.86 Mystic 1588 MJ-1 Oil 14.2		Framingham Station	1586	FJ-2	Oil		14.2	
Kendall Square15954CC Gas6,996.95Image: constraint of the second se		Framingham Station	1586	FJ-3	Oil		14.2	
Montgomery L'Energia Power 54586 2 CC Gas 1 2008 Partners 1588 81 CC Gas 3,040.01 2008 Mystic 1588 82 CC Gas 3,147.39 2008 Mystic 1588 93 CC Gas 3,147.39 2008 Mystic 1588 93 CC Gas 3,299.05 2008 Mystic 1588 94 CC Gas 3,101.86 2008 Mystic 1588 MJ-1 Oil 14.2 2008 ANP Bellingham Energy Project 55211 1 CC Gas 5,576.22 2008		Kendall Square	1595	4	CC Gas	6.996.95		
Partners 51505 1 60 Gas 3,040.01 100 Mystic 1588 82 CC Gas 3,147.39 100 Mystic 1588 93 CC Gas 3,299.05 100 Mystic 1588 94 CC Gas 3,101.86 100 Mystic 1588 94 CC Gas 3,101.86 14.2 ANP Bellingham Energy Project 55211 1 CC Gas 5,576.22 100		Montgomery L'Energia Power	54586	2	CC Gas			2008
Mystic 1588 81 CC Gas 3,040.01 Image: Constraint of the state of t		Partners	0.000	-				2000
Mystic 1588 82 CC Gas 3,147.39 Image: Constraint of the state of t		Mystic	1588	81	CC Gas	3,040.01		
Mystic 1588 93 CC Gas 3,299.05 Mystic 1588 94 CC Gas 3,101.86 Mystic 1588 MJ-1 Oil 14.2 ANP Bellingham Energy Project 55211 1 CC Gas 5,576.22		Mystic	1588	82	CC Gas	3,147.39		
Mystic 1588 94 CC Gas 3,101.86 Mystic 1588 MJ-1 Oil 14.2 ANP Bellingham Energy Project 55211 1 CC Gas 5,576.22		Mystic	1588	93	CC Gas	3,299.05		
Mystic 1588 MJ-1 Oil 14.2 ANP Bellingham Energy Project 55211 1 CC Gas 5,576.22		Mystic	1588	94	CC Gas	3,101.86		
ANP Bellingham Energy Project 55211 1 CC Gas 5,576.22		Mystic	1588	MJ-1	Oil		14.2	
		ANP Bellingham Energy Project	55211	1	CC Gas	5,576.22		
Bellingham 10307 1 CC Gas 2,649.80		Bellingham	10307	1	CC Gas	2,649.80		

Table 9-9: Units not considered to be HEDD units due to average operating hours, size, or online date

State	Facility Name	ORIS	Unit ID	ERTAC Unit Type	Avg. Op. Hrs. 2014-	Size	Online
	Bellingham	10307	2	CC Gas	2 816 08	(10100)	
	Earo Pivor Station	55217	11		6 017 24		
	Fore River Station	55217	12		6 222 46		
	Pottor	1660	12	SC Gas	0,222.40		2000
	Potter	1660	5	SC Gas			2009
	AND Blackstone Energy Co	55212	1		1 820 25		2009
	ANP Blackstone Energy Co.	55212	2		4,820.23		
	Ailford Dowor	53212	1		2 560 06		
	Millonnium Dower Dortnors	54805	1		2,500.90		
NILI	Crapita Bidga Energy	55079	1		0,233.41		
	Granite Ridge Energy	55170	0001		0,540.02		
	Granite Ridge Energy	55170	0002		6,445.70		
	Newington Power Facility	55001	1		2,807.30		
	Newington Power Facility	55661	2	CC Gas	2,854.91		
IJ	Bergen	2398	1101	CC Gas	6,085.43		
	Bergen	2398	1201	CC Gas	6,426.61		
	Bergen	2398	1301	CC Gas	5,856.22		
	Bergen	2398	1401	CC Gas	5,968.10		
	Bergen	2398	2101	CC Gas	6,986.52		
	Bergen	2398	2201	CC Gas	6,785.99		
	Camden Plant Holding, LLC	10751	002001	CC Gas	2,662.45		
	Cumberland	5083	05001	SC Gas			2009
	Newark Bay Cogen	50385	1001	CC Gas	3,610.86		
	Newark Bay Cogen	50385	2001	CC Gas	3,529.25		
	Sunoco Power Generation, LLC	50561	0001	CC Gas	3,005.99		
	Sunoco Power Generation, LLC	50561	0002	CC Gas	2,142.19		
	Bayonne Plant Holding, LLC	50497	001001	SC Gas	3,338.70		
	Bayonne Plant Holding, LLC	50497	002001	SC Gas	3,221.74		
	Bayonne Plant Holding, LLC	50497	004001	SC Gas	3,603.48		
	AES Red Oak	55239	1	CC Gas	7,637.33		
	AES Red Oak	55239	2	CC Gas	7,891.65		
	AES Red Oak	55239	3	CC Gas	7,665.53		
	North Jersey Energy Associates	10308	1001	CC Gas	4,217.20		
	North Jersey Energy Associates	10308	1002	CC Gas	4,350.87		
	Lakewood Cogeneration	54640	001001	SC Gas	4,241.82		
	Lakewood Cogeneration	54640	002001	CC Gas	4,375.07		
	Pedricktown Cogeneration Plant	10099	001001	CC Gas	1,989.43		
	E F Kenilworth, Inc.	10805	002001	CC Gas	8,186.13		
	Linden Cogeneration Facility	50006	004001	CC Gas	8,411.49		
	Linden Cogeneration Facility	50006	005001	CC Gas	5,768.24		
	Linden Cogeneration Facility	50006	006001	CC Gas	5,701.92		
	Linden Cogeneration Facility	50006	007001	CC Gas	6.073.14		
	Linden Cogeneration Facility	50006	008001	CC Gas	6.450.46		
	Linden Cogeneration Facility	50006	009001	CC Gas	6.121.65		
	Linden Generating Station	2406	1101	CC Gas	7.309.18		
	Linden Generating Station	2406	1201	CC Gas	7,114,17		
	Linden Generating Station	2406	2101	CC Gas	6 534 45		
	Linden Generating Station	2406	2201	CC Gas	6 726 01		
NV	Bethlehem Energy Center	2530	10001	CC Gas	6 989 36		
	(Albany)	2335	10001		0,505.50		
	Bethlehem Energy Center	2539	10002	CC Gas	7 004 12		
	(Albany)	2335	10002		7,001.12		
	Selkirk Cogen Partners	10725	CTG101	CC Gas	2 887 38		
	Selkirk Cogen Partners	10725	CTG201		3 187 /1		
	Allegany Station No. 122	10610	00001	CC Gas	2 032 49		
	Ringhamton Cogon Plant	55600	1	CC Gas	4 270 92		
	Athons Congrating Company	55400	1		4,270.03		
	Athens Concreting Company	55405	2		4,270.00		
	Athens Concreting Company	55405	2		3,020.04		
	Empire Concreting Company	55405	3 CT 1	CC Gas	5,057.55		
	Empire Generating Company	50259		SC GdS	0,000.13		2010
	Pathpage Energy Caster	50259	CT4	SC Gas	0,507.34		2010
	Beinpage Energy Center	50292	G14	CC Gas	4,152.70		

State	Facility Name	ORIS	Unit ID	ERTAC Unit Type	Avg. Op. Hrs. 2014-	Size	Online
	Fast River	2493	2	CC Gas	7 504 92	(10100)	11.
	Astoria Energy	55375	CT1	CC Gas	7,304.32		
	Astoria Energy	55375	СТ2	CC Gas	7,340.45		-
	Astoria Energy	55375	CT2	CC Gas	6 904 50		
	Astoria Energy	55375	CT4	CC Gas	6 980 33		-
	Poletti 500 MW CC	56196			6 945 67		
	Poletti 500 MW CC	56196	CTG7R	CC Gas	7 370 18		
	Caithness Long Island Energy Center	56234	0001	CC Gas	7,370.10		2009
	Pinelawn Power	56188	00001	CC Gas	2,916.25		
	Richard M Flynn (Holtsville)	7314	001	CC Gas	7,982.12		
PA	Hunterstown Combined Cycle	55976	CT101	CC Gas	6,292.64		
	Hunterstown Combined Cycle	55976	CT201	CC Gas	6,096.57		
	Hunterstown Combined Cycle	55976	CT301	CC Gas	6,323.80		
	Allegheny Energy Units 3, 4 & 5	55710	3	CC Gas	7,762.14		
	Allegheny Energy Units 3, 4 & 5	55710	4	CC Gas	7,874.02		
	Armstrong Energy Ltd Part	55347	1	SC Gas	1,858.34		
	Ontelaunee Energy Center	55193	CT1	SC Gas	8,190.16		
	Ontelaunee Energy Center	55193	CT2	SC Gas	8,081.60		
	Fairless Energy, LLC	55298	1A	CC Gas	7,118.74		
	Fairless Energy, LLC	55298	1B	CC Gas	6,923.55		
	Fairless Energy, LLC	55298	2A	CC Gas	7,470.15		
	Fairless Energy, LLC	55298	2B	CC Gas	7,549.73		
	FPL Energy Marcus Hook, LP	55801	0001	CC Gas	6,923.78		
	FPL Energy Marcus Hook, LP	55801	0002	CC Gas	7,054.01		
	FPL Energy Marcus Hook, LP	55801	0003	CC Gas	6,921.39		
	Liberty Electric Power Plant	55231	0001	CC Gas	7,857.58		
	Liberty Electric Power Plant	55231	0002	CC Gas	8,063.54		
	Fayette Energy Facility	55516	CTG1	CC Gas	7,856.79		
	Fayette Energy Facility	55516	CTG2	CC Gas	7,880.00		
	Grays Ferry Cogen Partnership	54785	2	CC Gas	7,893.73		
	Calpine Mid Merit - York Energy	55524	1	CC Gas	4,439.17		
	Calpine Mid Merit - York Energy	55524	2	CC Gas	4,542.27		
	Calpine Mid Merit - York Energy	55524	3	CC Gas	4,332.88		
RI	Tiverton Power	55048	1	CC Gas	6,362.60		
	FPLE Rhode Island State Energy	55107	RISEP1	CC Gas	4,228.86		
	FPLE Rhode Island State Energy	55107	RISEP2	CC Gas	4,064.81		
	Manchester Street	3236	10	CC Gas	5,173.67		
	Manchester Street	3236	11	CC Gas	5,256.83		
	Manchester Street	3236	9	CC Gas	4,440.25		
	Ocean State Power	51030	1	CC Gas	2,579.47		
	Ocean State Power	51030	2	CC Gas	2,640.89		
	Ocean State Power II	54324	3	CC Gas	2,116.38		
	Ocean State Power II	54324	4	CC Gas	2,153.97		

Following this, all states in MANE-VU with units considered to be potential HEDD units reviewed the file to confirm that the universe of units was correct. This resulted in the removal of two units (Table 9-10). This also resulted in the reintroduction of two units in New Jersey due to incomplete information about online dates in ERTAC and five units in New York due to state feedback on how they consider the units for regulatory purposes (Table 9-11).

Table 9-10: Units excluded as HEDD units due to state feedback

State	Facility Name	ORIS ID	Unit ID	ERTAC Unit Type					
NY	Rensselaer Cogen	54034	1GTDBS	Combined Cycle Gas					
NY	AG – Energy	10803	2	Combined Cycle Gas					
Table 9	Table 9-11: Units reintroduced as HEDD units due to state feedback								
State	te Facility Name ORIS ID Unit ID ERTAC Unit T								

State	Facility Name	ORIS ID	Unit ID	ERTAC Unit Type
NJ	EFS Parlin Holdings, LLC	50799	001001	Boiler Gas
NJ	EFS Parlin Holdings, LLC	50799	003001	Simple Cycle Gas
NY	Equus Freeport Power Generating Station	56032	0001	Combined Cycle Gas
NY	Glenwood Landing Energy Center	7869	UGT012	Simple Cycle Gas
NY	Glenwood Landing Energy Center	7869	UGT013	Simple Cycle Gas
NY	74th Street	2504	120	Boiler Gas
NY	Bayswater Peaking Facility	55699	1	Simple Cycle Gas

To calculate the emission rates in lbs. /MMBtu we used formulas where the measured O_2 is 15% and 42 ppm and 96 ppm are the stack gas concentrations for natural gas and oil, respectively. This resulted in calculations of emission rates of 0.154 lbs. /MMBtu and 0.371 lbs. /MMBtu for natural gas and oil respectively.

The 2028 annual NO_x emission rates from the non-OS emission rate run for the remaining 344 units were then compared against the must meet emission rates in the ask of 0.154 lb./MMBtu for gas-fired units and 0.371 lb./MMBtu for oil-fired units. 172 of the units were found to meet the applicable emission rate in 2028 already leaving 171 units that needed additional control.

Additionally Connecticut provided emission rates to use instead of either the ERTAC v2.7 base case 2028 projected emission rate or the emission rate calculated to meet the ask and these adjustments are shown in Table 9-12. In all cases an emission rate of 0.19 lb. /MMBtu was applied since these units are required to meet a stricter ozone season limit due to RCSA section 22a-174-22e. The new standard begins on June 1, 2018, but trading is allowed until June 1, 2023 and for this modeling we expect the sources to individually meet that rate by 2028.

State	Facility Name	ORIS ID	Unit ID	ERTAC Unit Type
СТ	Branford	540	10	Oil
СТ	Bridgeport Harbor Station	568	BHB4	Oil
СТ	Devon	544	10	Oil
СТ	Franklin Drive	561	10	Oil
СТ	Middletown	562	10	Oil
СТ	Norwich	581	TRBINE	Oil
СТ	South Meadow Station	563	11A	Oil
СТ	South Meadow Station	563	11B	Oil
СТ	South Meadow Station	563	12A	Oil
СТ	South Meadow Station	563	12B	Oil
СТ	South Meadow Station	563	13A	Oil
СТ	South Meadow Station	563	13B	Oil
СТ	South Meadow Station	563	14A	Oil
СТ	South Meadow Station	563	14B	Oil
СТ	Torrington Terminal	565	10	Oil
СТ	Tunnel	557	10	Oil

Table 9-12: HEDD units required to meet 0.19 lb. /MMBtu in CT

To develop the control file first a search of the control file that included Ask 1 was completed for any units that needed an adjusted emission rate. Any entries in the control file that needed their emission rate adjusted were then removed. A total of 118 entries were then added to account for adjusted emission rates due to Ask 5. Then new emission rates were appended to the control file resulting in a control file with 2782 entries. The new entries to the control file are available upon request.

Non-EGU Sources

To model HEDD units that were not in the ERTAC system control entries were developed to be processed as a control packet using EMF. Only changes to NO_x emissions as the result of meeting "the Ask" were modeled. The ask included two emission rates each for gas-fired and oil-fired HEDD units, one that must be met and one that should be strived to be met. The former was used in modeling. All states in MANE-VU had emission rates evaluated in their units.

To determine which units should be modeled as HEDD units, the SCCs found in the SMOKE ready ff10 files for the non-ERTAC IPM EGUs and non-EGU Point for the 2011 base case were compared to the list of SCCs in Table 9-8.

The units were then evaluated based on design capacity (found in ff10 inventory files), 2014-2016 average operating hours, whether the unit went online after May 1, 2007, and whether the unit supplied electricity to the grid. The latter three traits were based on feedback from the state in which the unit was located. This results in the removal of 139 units.

The same emission rate calculations described above in the section on EGUs were used to determine appropriate emission rates for oil- and gas-fired HEDDs. 2011 and 2028 emission rates were calculated for each unit that had a design capacity denoted in MMBtu/hour by dividing the annual emissions by the design capacity and then by the number of hours the unit operated in 2011 (the hours of operation were obtained from the individual state that the unit resided in). For units without known operating hours in 2011 state supplied 2011 emission rates were used. For units with a design capacity in MW conversion factors were obtained from states to convert the design capacity to MMBtu/hour. The SCCs for each unit were then used to compare the 2028 emission rate to the "must meet" emission rate for HEDDs defined in the Ask. If the "must meet" ask emission rate was lower than the chosen emission rate (2028 calculated, 2011 calculated, or state supplied) a control efficiency was calculated for the unit to be included in the EMF control packet. The data needed to calculate control efficiencies is in Table 9-13 and the control efficiencies were included as an add-on control in the EMF control packet.

FIDS	Facility	Unit ID	Design Can		Control	Calc ER	Calc ER	State	Annlied	2011
1115		Onicib	(MMBtu/br)	500	Efficiency	2028	2011	Supplied	Rato	2011 On
			(1011010107111.)		Linclency	2020	2011	FR	nate	Up. Hrs
24005	515/011	9790/912	279	10100504	52.25	n/2	n/2	0.71	0 271	1113.
24003	5154511	87894813	378	10100304	52.25	11/a	liy a	0.71	0.371	
24005	5154811	87894413	268	20100201	32.56	n/a	0.1853	0.473	0.154	199
24005	5154811	87894013	268	20100201	32.56	n/a	0.1916	0.473	0.154	169
24005	5154811	87894213	268	20100201	32.56	n/a	0.1949	0.473	0.154	196
24005	5154811	87894313	268	20100201	32.56	n/a	0.1952	0.473	0.154	231
24005	5154811	87894613	268	20100201	32.56	n/a	0.1994	0.473	0.154	208
24005	5154811	87894513	268	20100201	32.56	n/a	0.2022	0.473	0.154	245
24005	5154811	87894113	268	20100201	32.56	n/a	0.2047	0.473	0.154	201
24005	5154811	87894713	268	20100201	32.56	n/a	0.2065	0.473	0.154	173
24017	6011511	87935713	250	10100504	33.11	1.1206	1.0825	1.2	0.371	72
24017	6011511	87935613	250	10100504	30.69	1.2089	1.1678	1.2	0.371	69
24033	6011911	88002113	250	10100504	53.82	0.6894	0.6659	0.71	0.371	37
24510	6435511	88059913	258	10100504	67.33	n/a	0.4616	0.551	0.371	85
24510	6435511	88060013	258	10100504	67.33	n/a	0.4732	0.551	0.371	105
24510	6435511	88060213	258	10100504	67.33	n/a	0.4787	0.551	0.371	116
24510	6435511	88060113	258	10100504	67.33	n/a	0.4877	0.551	0.371	98
34005	5086211	65758413	16.43	20100101	11.6	3.1993	3.1993	3.2	0.371	34

Table 9-13: Unit level data employed in HEDD control packet developme	nt
---	----

FIPS	Facility	Unit ID	Design Cap.	SCC	Control	Calc. ER	Calc. ER	State	Applied	2011
	ID		(MMBtu/hr.)		Efficiency	2028	2011	Supplied	Rate	Op.
								ER		Hrs.
34019	7604111	11863813	404	20100101	86.28	n/a	0.071	0.43	0.371	3
34019	7604111	11864013	404	20100101	86.28	n/a	0.1379	0.43	0.371	14
34019	7604111	11863313	386	20100201	63.64	n/a	0.1693	0.242	0.154	3
34019	7604111	11863613	404	20100101	86.28	n/a	0.1839	0.43	0.371	7
34019	7312511	10666513	458.43	20100201	91.12	n/a	0.1936	0.169	0.154	8
34019	7604111	11863713	404	20100101	86.28	n/a	0.2448	0.43	0.371	9
42001	4713411	28151913	305	20100101	72.87	0.5091	0.4073		0.371	71
42001	4713311	28152013	305	20100101	51.43	0.7213	0.577		0.371	55
42011	3857011	37800113	55	20100101	13.89	2.6705	2.1364		0.371	8
42011	3857011	37799613	58	20100101	13.8	2.6888	2.1511		0.371	21
42045	4724311	27722313	251	20100101	74.18	0.5001	0.4001		0.371	28
42045	4724311	27722413	251	20100101	69.07	0.5371	0.4297		0.371	27
42045	6662011	17765213	58	20100101	13.28	2.7937	2.2349		0.371	15
42045	6662011	17765113	58	20100101	10.81	3.4305	2.7444		0.371	16
42089	3748611	37854913	305	20100101	51.06	0.7265	0.5812		0.371	22
42091	3692211	37043613	284	20100101	59.76	0.6209	0.4967		0.371	189
42091	3692211	37043513	284	20100101	59.43	0.6243	0.4995		0.371	141
42091	3692211	37043713	284	20100101	57.56	0.6445	0.5156		0.371	166
42101	6559811	103757713	233	20100101	54.13	0.6854	0.5483		0.371	25
42117	3878511	37458813	65	20100201	10.68	1.442	1.442		0.154	284
42123	3893511	37450213	194	20100101	11.66	3.1828	2.5462		0.371	63

Intra-RPO Ask 6/Inter-RPO Ask 5

Each state should consider and report in its SIP measures or programs to: a) decrease energy demand through the use of energy efficiency, and b) increase the use within their state of Combined Heat and Power (CHP) and other clean Distributed Generation technologies including fuel cells, wind, and solar

Modeling was not needed for this ask since there is no clear enforceable emission reductions.

Federal Ask 1, 2, & 3

Federal Land Managers to consult with Class I area states when scheduling prescribed burns and ensure that these burns do not impact nearby IMPROVE visibility measurements and do not impact potential 20 percent most and least visibility impaired days; EPA to develop measures that will further reduce emissions from heavy-duty onroad vehicles; and EPA to ensure that Class I Area state "Asks" are addressed in "contributing" state SIPs prior to approval

Modeling was not needed for this ask since there is no clear enforceable emission reductions.

Temporalization

Following completion of the non-EGU point source control case inventories the non-EGU point and non-ERTAC IPM inventory sectors were temporalized in the same fashion as in Section 8.

2028 Visibility Control Inventory Results

ERTAC EGU Results

The four ERTAC runs completed to project the MANE-VU Ask in total were completed in the following order: Ask 1 (Non-OS Rate), Ask 5 (HEDD), Ask 3 (LSFO), and Ask 2. Each run adds the

additional Ask to the previous run. Ask 2 was completed last to avoid any potential discrepancies where one of the other Asks also impacted a unit included in Ask 2.

Table 9-14 shows the results from the four ERTAC projections that were conducted in order to model the MANE-VU Asks. Only runs that impacted emissions are shown (i.e., the HEDD run only impacted NO_x emissions so it is not shown in the table under SO₂).

One can see that substantial annual reductions in NO_x occur only in the projections for Ask 1 (Non-OS Rate). This would be expected since Ask 5 (HEDD) only impacts units that run infrequently and Ask 2 only impacts NO_x emissions from a few units. In regard to SO₂ reductions, several states in LADCO, as well as Pennsylvania, see a drop in SO₂ emissions from the Ask 2 projections and Ask 3 (LSFO) only results in minor annual reductions, since many oil-fired units run infrequently.

	FY Annual	NO _x (tons)			Sum of FY Annual SO ₂ (tons)						
	Base	+ Non-OS Rate	+ HEDD	+ Ask 2	Base	+ LSFO	+ Ask 2				
MANE-VU	85,188	75,094	74,814	73,662	196,776	196,713	194,922				
СТ	608	608	607	607	158	158	158				
DE	1,723	1,641	1,641	1,641	1,522	1,521	1,521				
MA*	781	781	770	770	51	53*	50				
MD	9,505	6,907	6,900	6,900	19,519	19,463	19,447				
ME	248	248	248	248	19	19	13				
NH	1,043	809	809	809	1,050	1,050	1,050				
NJ	4,666	4,666	4,666	4,666	2,111	2,111	2,111				
NY	12,246	12,246	12,001	12,001	22,810	22,807	22,807				
PA	54,017	46,837	46,822	45,670	149,526	149,521	147,754				
RI	351	351	351	351	11	11	11				
VT	0	0	0	0	0	0	0				
LADCO	199,681	170,491	170,491	167,660	379,619	379,607	326,190				
IL	34,266	33,348	33,348	33,348	81,867	81,865	81,865				
IN	59,945	50,139	50,139	47,786	114,744	114,744	94,783				
MI	29,117	26,784	26,784	26,776	45,885	45,885	29,515				
MN	9,549	9,549	9,549	9,549	11,244	11,244	11,244				
ОН	50,598	34,570	34,570	34,099	114,814	114,804	97,718				
WI	16,206	16,101	16,101	16,101	11,065	11,065	11,065				
SESARM	271,178	242,544	242,544	242,544	273,628	273,490	273,213				
AL	24,627	23,866	23,866	23,866	15,717	15,717	15,717				
FL	32,211	32,211	32,211	32,211	34,152	34,149	34,149				
GA	32,833	23,616	23,616	23,616	15,732	15,732	15,732				
КҮ	54,292	49,204	49,204	49,204	87,529	87,529	87,529				
MS	18,963	18,963	18,963	18,963	9,517	9,517	9,517				
NC	27,812	24,115	24,115	24,115	19,735	19,735	19,735				
SC	9,786	9,167	9,167	9,167	10,093	10,093	10,093				
TN	9,617	9,357	9,357	9,357	17,944	17,944	17,944				
VA	14,275	14,040	14,040	14,040	5,378	5,244	4,968				
wv	46,764	38,005	38,005	38,005	57,831	57,831	57,831				
CENSARA	354,826	348,922	348,922	348,922	760,831	760,823	760,823				
AR	39,750	39,750	39,750	39,750	77,264	77,264	77,264				
IA	22,786	22,536	22,536	22,536	34,391	34,391	34,391				
KS	25,415	22,742	22,742	22,742	25,237	25,237	25,237				
LA	35,446	35,446	35,446	35,446	55,223	55,223	55,223				
MO	38,233	35,683	35,683	35,683	134,137	134,129	134,129				
NE	37,447	37,447	37,447	37,447	74,770	74,770	74,770				
ОК	31,099	31,099	31,099	31,099	28,602	28,602	28,602				
ТХ	124,650	124,220	124,220	124,220	331,207	331,207	331,207				
Total	910,874	837,051	836,771	832,788	1,610,854	1,610,633	1,555,148				

Table 9-14: Annual NO_x and SO₂ results in tons from ERTAC projections for four of the MANE-VU Asks

* As part of the review of LSFO rates the future year emission rate in the base case for Mystic (orispl: 1588, unit id: 7) was found to be incorrect and increased.

EMF Results

The one EMF control strategy was run with three control program packets to estimate the impact of the MANE-VU Ask 2, Ask 5 (HEDD), and Ask 3 (LSFO). Table 9-15 shows the results from the four EMF control packet projections that were conducted in order to model the MANE-VU Asks. Only runs that impacted emissions are shown (i.e., the HEDD run only impacted NO_x emissions so it is not shown in the table under SO₂).

	Point Sour	ces		Non-Point Sources							
	SO ₂			NOx				SO ₂		NOx	
	Base	+ Ask2	+ LSFO	Base	+ Ask2	+ HEDD	+ LSFO	Base	+ LSFO	Base	+ LSFO
MANE-								26,371	13,964	166,955	165,413
VU	82,811	69,984	68,516	148,081	144,383	144,330	144,247				
СТ	224	224	224	2,170	2,170	2,170	2,170	221	221	8,992	8,992
DC	21	21	5	554	554	554	551	626	11	1,404	1,385
DE	2,045	2,045	2,045	2,072	2,072	2,072	2,072	16	16	2,064	2,064
MA	1,872	1,872	1,872	12,525	12,525	12,525	12,525	387	387	17,716	17,716
MD	25,076	12,297	11,662	13,479	12,350	12,339	12,319	8,284	1,107	14,274	13,721
ME	2,045	2,045	2,045	10,343	10,343	10,343	10,343	495	495	2,581	2,581
NH	1,307	1,307	530	2,170	2,170	2,170	2,166	2,855	129	3,645	3,393
NJ	1,970	1,970	1,970	11,064	11,064	11,064	11,063	472	388	21,746	21,746
NY	16,066	16,017	16,017	39,698	37,128	37,128	37,128	6,089	6,089	57,610	57,610
PA	31,178	31,178	31,139	51,991	51,991	51,949	51,894	6,515	4,708	30,495	29,778
RI	881	881	881	1,286	1,286	1,286	1,286	98	98	3,726	3,726
VT	127	127	127	730	730	730	730	315	315	2,703	2,703
LADCO	278,213	278,213	277,654	290,984	290,984	290,984	290,848	14,252	11,348	171,500	170,979
IL	60,809	60,809	60,613	51,706	51,706	51,706	51,683	2,966	2,806	43,409	43,288
IN	72,787	72,787	72,523	65,994	65,994	65,994	65,909	2,042	1,609	16,684	16,624
MI	34,721	34,721	34,650	48,984	48,984	48,984	48,970	1,364	981	29,966	29,848
MN	17,037	17,037	17,037	46,112	46,112	46,112	46,112	2,429	2,429	22,251	22,251
ОН	57,865	57,865	57,836	47,653	47,653	47,653	47,640	3,752	1,823	38,670	38,449
WI	34,993	34,993	34,993	30,535	30,535	30,535	30,535	1,699	1,699	20,521	20,521
SESARM	234,058	234,058	231,664	311,291	311,291	311,291	311,061	31,982	21,182	122,379	121,723
AL	43,926	43,926	43,816	49,967	49,967	49,967	49,944	9,650	9,526	11,895	11,876
FL	35,360	35,360	35,167	40,111	40,111	40,111	40,090	1,868	1,610	20,986	20,951
GA	23,915	23,915	23,915	43,122	43,122	43,122	43,122	573	573	17,271	17,271
КҮ	18,876	18,876	18,729	23,544	23,544	23,544	23,533	716	318	6,830	6,780
MS	9,770	9,770	9,770	17,126	17,126	17,126	17,126	118	118	4,217	4,217
NC	27,863	27,863	26,476	35,111	35,111	35,111	35,048	6,738	934	13,594	13,348
SC	24,545	24,545	24,545	27,852	27,852	27,852	27,852	1,524	1,524	10,574	10,574
TN	8,776	8,776	8,646	30,884	30,884	30,884	30,820	1,321	1,037	17,218	17,178
VA	24,850	24,850	24,617	32,117	32,117	32,117	32,096	5,101	1,935	14,996	14,795
wv	16,176	16,176	15,982	11,457	11,457	11,457	11,431	4,373	3,606	4,798	4,734
CENSARA	260,944	260,944	260,665	330,581	330,581	330,581	330,501	5,988	5,063	129,642	129,064
AR	9,960	9,960	9,960	21,823	21,823	21,823	21,823	89	89	3,025	3,025
IA	16,962	16,962	16,962	20,299	20,299	20,299	20,299	2,303	2,303	12,067	12,067
KS	5,134	5,134	5,134	14,644	14,644	14,644	14,644	145	145	9,554	9,554
LA	81,023	81,023	80,889	80,961	80,961	80,961	80,907	1,686	1,067	35,405	35,061
MO	37,608	37,608	37,569	26,391	26,391	26,391	26,385	502	366	13,380	13,357
NE	1,783	1,783	1,783	8,400	8,400	8,400	8,400	81	81	4,159	4,159
OK	20,211	20,211	20,211	18,801	18,801	18,801	18,801	595	595	18,677	18,677
ТХ	88,264	88,264	88,157	139,262	139,262	139,262	139,241	586	417	33,375	33,164
Total	856.026	843.198	838.498	1.080.937	1.077.238	1.077.186	1.076.656	78.593	51.556	590.477	587.180

Table 9-15: Annual NO_x and SO₂ results in tons from a EMF control strategy run for three of the MANE-VU Asks

References

- Mid-Atlantic Northeast Visibility Union 2017a, 'Statement of the Mid-Atlantic/Northeast Visibility Union (MANE-VU) States Concerning a Course of Action within MANE-VU Toward Assuring Reasonable Progress for the Second Regional Haze Implementation Period (2018-2028)'.
- Mid-Atlantic Northeast Visibility Union 2017b, 'Statement of the Mid-Atlantic/Northeast Visibility Union (MANE-VU) States Concerning a Course of Action in Contributing States Located Upwind of MANE-VU Toward Assuring Reasonable Progress for the Second Regional Haze Implementation Period (2018-2028)'.
- Mid-Atlantic Northeast Visibility Union 2017c, 'Statement of the Mid-Atlantic/Northeast Visibility Union (MANE-VU) States Concerning a Course of Action by the Environmental Protection Agency and Federal Land Managers Toward Assuring Reasonable Progress for the Second Regional Haze Implementation Period (2018-2028)'.
- Mid-Atlantic Northeast Visibility Union 2017d, 'EGU Data for Four-Factor Analyses (Only CALPUFF Units)'.
- Mid-Atlantic Northeast Visibility Union 2017, 2016 MANE-VU Source Contribution Modeling Report.
- Mid-Atlantic Northeast Visibility Union 2017, Impact of Wintertime SCR/SNCR Optimization on Visibility Impairing Nitrate Precursor Emissions.

Section 10. Relative Response Factor (RRF) and "Modeled Attainment Test" (MAT)

Overview

EPA guidance requires the use of a modeled attainment test, which is described as a procedure in which an air quality model is used to simulate current and future air quality (US EPA 2014). As an example, if future estimates, after rounding, of ozone concentrations are less than or equal to 75 ppb, then this element of the attainment test would be satisfied for the 2008 ozone NAAQS. A modeled attainment demonstration consists of analyses, which estimate whether selected emissions reductions will result in ambient concentrations that meet the NAAQS or progress goals.

For this modeled attainment test, model estimates are used in a "relative" rather than "absolute" sense. That is, one calculates the ratio of the model's future to current (baseline) predictions at ozone monitors. These ratios are called RRF. Future ozone concentrations are estimated at existing monitoring sites by multiplying modeled RRF at locations "near" each monitor by the observation-based monitor-specific "baseline" ozone design value. The following equation describes the approach as applied to a monitoring site i:

$$DVF_i = RRF_i * DVC_i$$

where DVC_i is the baseline concentration monitored at site i, RRF_i is the relative response factor calculated for site i, and DVF_i is the estimated future design value for site i. The RRF is the ratio of the future 8-hour daily maximum concentration predicted at a monitor to the baseline 8-hour daily maximum concentration predicted at the monitor location averaged over multiple days determined from the base case.

General Design Value Calculation

The following sections describe the calculation of each of the elements in Equation 1 as implemented by NYSDEC through an in-house computer program written in FORTRAN (n.b. the subscript "i" from equation is dropped in the following description). However, all calculations are still performed on a monitor-by-monitor basis.

It should be noted that while this algorithm describes the techniques OTC uses to calculate RRFs for a typical monitor it in no way precludes states from doing so differently in order to evaluate a particular monitor either in their attainment demonstration or for weight-of-evidence. Further information later in this section describes one particular scenario that might lead states to want to adopt a different method for particular monitors.

Step 1 - Calculation of DVC

Design values are calculated in accordance with 40 CFR Part 50.10, Appendix I, as 3-year averages of the fourth highest monitored daily 8-hour maximum value at each monitoring site. For example, the design value for 2009-2011 is the average of the fourth highest monitored daily 8-hour maximum values in 2009, 2010 and 2011. Design values are labeled with the *last*

year of the design value period, i.e. the design value for the 2009 – 2011 is labeled as "2011 design value".

For MAT, the guidance defines DVC in Equation 1 as the average of the design values, which straddle the baseline inventory year. Here the baseline inventory year is 2011, therefore DVC is the average of the "2011 design value" (determined from 2009-2011 observations), the "2012 design value" (determined from 2010-2012 observations), and the "2013 design value" (determined from 2011-2013 observations). Consequently, DVC is derived from observations covering a five-year period and is a weighted average with 2011 observations "weighted" three times, 2010 and 2012 observations weighted twice, and 2009 and 2013 observations weighted once.

The following criteria concerning missing design values were implemented in the FORTRAN code calculating DVC:

- a) For monitors with only four years of consecutive data, the guidance allows DVC to be computed as the average of two design values within that period.
- b) For monitors with only three years of consecutive data, the DVC is equal to the design value calculated for that three year period
- c) For monitors with less than three years of consecutive data, no DVC can be estimated

Step 2 - Calculation of RRF

The guidance requires the calculation of RRF with CMAQ output from grid cells that are "near" a monitor. Because of the 12 km grid spacing used in the CMAQ simulations, model predictions in a 3X3 grid cell array centered on the monitoring location are considered "near" that monitor. For each day, the maximum base case and control case concentration within that array is selected for RRF calculation as set forth in the guidance document.

Because photochemical models were found to be less responsive to emission reductions on days of lower simulated ozone concentrations, the guidance recommends applying screening criteria to the daily model predictions at individual monitors to determine whether that day's predictions are to be used to calculate the RRF or not. Only "high ozone days" are to be selected, i.e. days with ozone values that are greater than 60ppb.

RRF = (average control case over high ozone days selected based on base case concentrations) / (average base case over selected high ozone days)

In addition, the guidance recommends that preferably ten or more "high ozone days", as identified below, be selected for RRF calculation. In no case can the RRF be calculated with fewer than five "high ozone days".

The following describes the logic with which NYSDEC implemented these screening criteria into its FORTRAN code for RRF calculation:

- a) <u>Selecting concentrations from grid cells surrounding the monitor</u>
 - i. Determine the grid cell in which the monitor is located and include the surrounding 8 grid cells to form a 3X3 grid cell array.

- ii. Determine daily maximum 8-hr ozone concentrations for each day for each of the 9 grid cells for both base case and control case.
- For each day, pick the highest daily maximum 8-hr ozone value out of all 9 grid cells.
 This is the daily maximum 8-hr ozone concentration for that monitor for that day to be used in RRF calculations (following the screening criteria listed below).
- iv. This is done for the base case only. For the future case the same grid cell is used regardless of whether it is the highest or not.
- b) <u>Selecting modeling days to be used in the RRF computation (again done on a monitor-by-monitor basis)</u>
 - i. Starting with an ozone threshold (TO_3) of 75 ppb and a minimum required number of days (Dmin) of 10, determine all days for which the simulated base case concentration (as determined in step (a) is at or above the threshold TO_3 .
 - ii. If the number of such days is greater to or equal Dmin, identify these days and proceed to step (c). Otherwise, continue to b(iii), below.
 - iii. Lower the threshold (TO₃) by 1 ppb intervals and go back to b(i) to identify the days. If the minimum number of days is not reached, then reduce that requirement by 1 day (but no lower than 5 days and TO₃ must be ≥60 ppb), and go back to b(i). Otherwise proceed to b(iv) below.
 - iv. Stop. No RRF can be calculated for this monitor because there were less than 5 days with base case daily maximum concentration ≥60 ppb.
- c) <u>RRF computation:</u> Compute the RRF by averaging the daily maximum 8-hr ozone concentrations for base case and control case determined in step (a) over all of the days determined in step (b). The RRF is the ratio of average control case concentrations over average base case concentrations.

Step 3 - Computation of DVF

Compute DVF as the product of DVC from step (1) and RRF from step (2). Note, the following conventions on numerical precision (truncation, rounding) were applied:

- a) DV are truncated in accordance with 40 CFR Part 50.10, Appendix I. This applies to the 2011, 2012, and 2013 design values.
- b) DVC (averages of design values over multiple years) are calculated in ppb and carried to 1 significant digit
- c) RRF are calculated and carried to three significant digits
- d) DVF is calculated by multiplying DVC with RRF, followed by truncation.

Land-Water Interface Issues

When monitors are located so as to result in one or more of the 8 additional grid cells falling over a body of water, OTC has found that those monitors are often not responsive to changes in emissions. Research conducted by the University of Maryland on the calculation of future design values has demonstrated some potential flaws with EPA modeling guidance in regards to calculating RRFs for these particular monitors.

It is often the case that due to slower dry deposition of ozone, fewer clouds being over bodies of water, PBL venting, PBL height, and high emissions from marine vessels, ozone measurements are much higher over bodies of water than nearby land masses (Goldberg et al. 2014; Loughner et al. 2011, 2014). As a result the maximum values in the 3x3 grid occur in a grid cell over water where ozone pollution is higher and less responsive to changes in emissions.

Since people are not generally exposed to the high levels of ozone that occurs over bodies of water for eight hours, there is less Figure 10-1: Modeled Ozone on July 7, 2011 near Edgewood, MD (Monitor #240251001)

of a need to evaluate these values in regards to the health based ozone standard, yet they are included in modeled design value calculations due to way the 3x3 grid is employed in the default method for calculated projected ozone values.

Figure 10-2: Modeled Ozone on July 2, 2011 near monitors in Southern Connecticut

An example of the misalignment created by the default modeled attainment test can be seen in Figure 10-1 above. In this case, the grid cell geographically nearest to the monitor models an 8 hour maximum of 88.1ppb, but the maximum grid cell is largely over water and reads 17.2 ppb higher at 105.3ppb. This results in modeled ozone calculations on high ozone days that don't correlate well with monitored data. Similar issues are illustrated in the Long Island Sound in Figure 10-2.

This problem can be seen to a greater extent when comparing Figure 10-3 and Figure 10-4. The former figure relies on the

nearest grid cell for calculations and the latter figure relies on the technique recommended in EPA guidance. The former technique results in calculations that are much less biased, have a lower RMSE, and correspond well to the 1:1 line.

Figure 10-3: Modeled vs. Observed 8-hour maximum Ozone at Edgewood, MD calculated using nearest grid cell (Monitor #240251001) Figure 10-4: Modeled vs. Observed 8-hour maximum Ozone at Edgewood, MD calculated using nearest maximum from 3x3 grid (Monitor #240251001)

Another technique that could be used to correct potential inaccuracies in calculation of design values at monitors at the land-water interface involves removing grid cells that are of a certain percentage of water. This can be done prior to running the algorithm discussed earlier in the document by applying a mask that contains cells considered to be water cells to the grid and zeroing them out so that they cannot be considered the maximum. Determination of what percentage of the grid cell must be water to be removed should be left to the state submitting the demonstration.

To analyze this technique NYSDEC removed any grid cell that was considered water in the mask provided with the WRF 3.4 package and recalculated the design values. This technique was tested using the Alpha 2 inventory. The results are shown for 10 monitors (3 in Connecticut, 5 in New York, and 1 each in Maryland and New Jersey) in Figure 10-5 though Figure 10-24, with the odd numbered figures being those corresponding to values calculated using all of the grid cells and the even numbered figures having the cells containing water removed. The one monitor in New Jersey acts as a control in this case since it is inland and will not be impacted by water grid cells.

At every monitor, except #340150002, removing the water cells resulted in a reduction in the maximum 8-hr ozone on the days examined. #340150002 also happens to be the only one of the 10 monitors examined that had 2011 8-hr maximums that were not grossly over-predicted from the 2011 observed monitors. The other nine monitors saw dramatic improvements in performance on the 10 days examined. When including the water cells the 2011 8-hr modeled values over-predicted observed by as much as 80ppb, often in the 40ppb range, with under-prediction only occurring a few times. However, the over-prediction once the water cells were removed in the worst case was brought down to 40 ppb and some monitors had as many days under-predicted as over-predicted.

Figure 10-5: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090010017 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-7: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090013007 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-9: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090019003 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-11: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #240251001 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-6: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090010017 using less water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-8: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090013007 using less water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-10: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #090019003 using less water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-12: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #240251001 using less water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-13: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #340150002 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-15: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360050133 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-17: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360810124 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-19: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360850067 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-14: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #340150002 using less water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-16: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360050133 using less water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-18: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360810124 using less water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-20: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #360850067 using less water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-21: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #361030002 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-23: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #361192004 using all grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-22: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #361030002 using less water grid cells for 10 selected days ordered by 2011 8-hr max

Figure 10-24: Observed and modeled 8-hr ozone (ppb) for 2011/2018 at monitor #361192004 using less water grid cells for 10 selected days ordered by 2011 8-hr max

We also looked at the results at all monitors, comparing modeling statistics for land-water monitors and monitors unaffected by the masking technique. In particular we looked at the deviation between the ten values used in design value calculations for each monitor (Table 10-1). We began by using the same formula as for MAGE presented in Appendix A, but took a slightly different approach. Rather than comparing the values on the same day as is typically done with MAGE and other modeling statistics, we compared the highest, 2nd highest, etc. values onto the tenth highest between observations and modeled values. When those numbers are compared for the monitors impacted by the land-water technique in the OTR+VA the deviation becomes of similar magnitude to those that were not impacted by the land-water technique, whereas using EPA's methods those monitors deviated over three times higher. A similar story occurs for monitors outside of the OTR. A full set of results for every monitor in the modeling domain is available upon request from OTC.

REGION	Monitor Status	EPA Method	Less Water
OTR+VA	Impacted	30.7144	9.2985
	Not Impacted	9.3182	9.3182
Non-OTR	Impacted	25.0910	11.8325
	Not Impacted	7.8990	7.8990

Table 10-1: MAGE for monitors impacted and not impacted by use of the land-water masking technique

When 2018 projections were examined there was a reduction in future projected ozone at all of the monitors, anywhere from 1 to 12 ppb, except the New Jersey monitor, which was not expected to change given its inland location (Table 10-2).

Monitor ID	DVC	DVF 2018	DVF 2018 (less water)
#090010017	80.3	80	73
#090013007	84.3	78	75
#090019003	83.7	84	76
#240251001	90	81	80
#340150002	84.3	75	75
#360050133	74	75	68
#360810124	78	78	73
#360850067	81.3	77	73
#361030002	83.3	82	78
#361192004	75.3	78	68

Table 10-2: 2018 ozone projections for 10 key monitors with and without water grids cells

While the OTC Modeling Committee does not believe that the technique described in EPA's guidance for calculating RRFs is problematic in most instances, monitors such as Edgewood, MD or those along the Long Island Sound should be analyzed in different ways in order to determine a method that produces the least biased results with the lowest error. Examples of some of the methods that could be used to reevaluate monitors at the land-water interface are:

- 1. Choosing the nearest grid cell to the monitor rather than use the 9 cell grid.
- 2. Averaging the 9 cell grid rather than using the maximum.
- 3. Using the maximum value from the 9 cell grid, but exclude grid cells over water though a mask or another technique.

References

- Goldberg, DL, Loughner, CP, Tzortziou, M, Stehr, JW, Pickering, KE, Marufu, LT and Dickerson, RR 2014, 'Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: Observations and models from the DISCOVER-AQ and CBODAQ campaigns', *Atmospheric Environment*, vol. 84, pp. 9–19.
- Loughner, CP, Allen, DJ, Pickering, KE, Zhang, D-L, Shou, Y-X and Dickerson, RR 2011, 'Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation', *Atmospheric Environment*, vol. 45, no. 24, pp. 4060–4072.
- Loughner, CP, Tzortziou, M, Follette-Cook, M, Pickering, KE, Goldberg, D, Satam, C, Weinheimer, A, Crawford, JH, Knapp, DJ, Montzka, DD, Diskin, GS and Dickerson, RR 2014, 'Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export', *Journal of Applied Meteorology and Climatology*, vol. 53, no. 7, pp. 1697–1713.
- US EPA 2014, 'Draft Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM_{2.5}, and Regional Haze', accessed from <https://www3.epa.gov/ttn/scram/guidance/guide/Draft_O3-PM-RH_Modeling_Guidance-2014.pdf>.

Section 11. Projected 8-hour Ozone Air Quality over the Ozone Transport Region

Overview

The US EPA guidance recommends the use of relative reduction factor (RRF) approach to demonstrate the attainment of the 8-hr ozone NAAQS (US EPA 2014). The OTC Modeling Committee implemented this approach in performing attainment assessment of the OTC areas as well as the approach outlined in Section 10 for removing grid cells over the water ("Less Water").

Ozone Results

As described in Section 10, the RRFs were determined for all monitors for future year simulations with emissions data from the Alpha and Alpha 2 inventories for 2018 and Beta 2 for 2017 inventory (Beta inventories were not included given the lack of difference between Beta and Beta 2). The base DVC for 2011 representing the number of DVs estimated on the basis of 3-year averages available from 2009 to 2013 are listed in Table 11-2 along with the RRF and future year projected ozone concentrations for each monitor identified by its AIRS ID. More information concerning the air quality monitors is in Appendix C. Projected results are provided for Alpha, Alpha 2, and Beta 2 inventories. The values in red represent DVC or DVF that exceed the 75 ppb 8-hr ozone NAAQS. The Beta 2 results are also presented using the technique of removing water grid cells from consideration discussed in Section 7.

When looking at differences in the modeled design values between the Alpha 2 inventories (Figure 11-1) and the Beta 2 inventories (Figure 11-2) in the OTR, one can observe some minor differences. There do appear to be decreases in ozone values throughout the OTR, in particular in the Mid-Atlantic. This would be expected because the use of an updated version of MOVES in Beta 2 decreased NO_x emissions throughout the region and upwind. There do appear to be several monitors in Massachusetts and upstate New York that do increase between Alpha 2 and Beta 2 (Section 6).

Figure 11-2: 2017 Projected Beta 2 Base Case Design Values (EPA Guidance)

We also examined the impact of using the water masking technique discussed in Section 10 Figure 11-3. One can see some decreases in ozone levels throughout the region when examining the Beta results when water grid cells are removed from calculations.

Moving onto the 2020 Gamma modeling, Figure 11-4 shows the photochemical modeling results for the 2020 base case using the Gamma platform with design values calculated using the techniques found in EPA guidance. One additional monitor in CT is projected to be in attainment of the 75 ppb in this modeling scenario. When the techinque of removing grid cells over the water is included, an additional monitor in Connecticut is projected to come into attainment for the standard, as seen in Figure 11-5.

There are also clear decreases in the number of monitors in each state projected to violate the 70

ppb NAAQS, as shown in the summary found in Table 11-1. DC, NJ, PA, and VA all had monitors projected to violate the 70 ppb NAAQS in the 2017 Beta and or the 2018 Alpha modeling, but no longer are projected to have any monitors above the 70 ppb NAAQS in 2020.

The monitor by monitor results for all future base case runs are presented in Table 11-2.

Figure 11-3: 2017 Projected Beta 2 Base Case Design Values (Less Water)

>75ppb

71 - 75ppb

65 - 70ppb < 65ppb

Table 11-1: State summary (max. DVF (ppb), monitors violating 75 ppb, monitors violating 70 ppb) of base case CMAQ modeling for 2018 Alpha and Alpha 2, 2017 Beta, and 2020 and 2023 Gamma platforms calculated using the "EPA Guidance" and "Less Water" techniques.

	Alpha - 2018				Alpha	a 2 - 2	018	Beta 2 - 2017					Gamma - 2020						Gamma - 2023			
		EPA	Guidan	ice	EPA	Guida	nce	EPA	Guida	nce	Les	s Wat	er	EPA	Guida	nce	Les	s Wa	ter	EPA	Guida	nce
OTR?	State	Max	>75 >	>70	Max	>75	>70	Max	Max	Max	Max	>75	>70	Max	>75	>70	Max	>75	>70	Max	>75	>70
OTR	СТ	84	4	5	84	4	6	83	4	6	76	3	6	83	3	5	83	2	6	81	1	3
	DC	71	0	1	70	0	0	69	0	0	69	0	0	66	0	0	66	0	0	62	0	0
	DE	69	0	0	69	0	0	69	0	0	68	0	0	66	0	0	66	0	0	63	0	0
	MA	70	0	0	72	0	1	71	0	1	70	0	0	67	0	0	67	0	0	64	0	0
	MD	82	1	7	81	1	6	81	1	5	80	1	4	77	1	1	77	1	1	74	0	1
	ME	66	0	0	68	0	0	65	0	0	66	0	0	62	0	0	62	0	0	60	0	0
	NH	64	0	0	63	0	0	64	0	0	64	0	0	62	0	0	62	0	0	60	0	0
	NJ	75	0	5	75	0	5	74	0	5	74	0	4	72	0	1	72	0	1	69	0	0
	NY	82	4	8	82	4	8	78	2	7	77	1	5	79	1	5	75	0	3	76	1	2
	PA	75	0	5	75	0	4	73	0	2	73	0	2	70	0	0	70	0	0	67	0	0
	RI	68	0	0	69	0	0	69	0	0	69	0	0	66	0	0	65	0	0	62	0	0
	VA	72	0	2	72	0	2	72	0	2	72	0	2	69	0	0	69	0	0	66	0	0
	VT	57	0	0	57	0	0	57	0	0	57	0	0	54	0	0	54	0	0	52	0	0
Non-OTR	AL	66	0	0	66	0	0	65	0	0	65	0	0	61	0	0	61	0	0	58	0	0
	AR	72	0	1	72	0	1	72	0	1	72	0	1	64	0	0	64	0	0	63	0	0
	GA	68	0	0	68	0	0	68	0	0	68	0	0	63	0	0	63	0	0	59	0	0
	IA	64	0	0	64	0	0	63	0	0	63	0	0	62	0	0	62	0	0	62	0	0
	IL	69	0	0	69	0	0	68	0	0	73	0	4	66	0	0	71	0	1	65	0	0
	IN	70	0	0	70	0	0	72	0	2	73	0	2	68	0	0	71	0	1	65	0	0
	KY	74	0	4	74	0	3	73	0	4	73	0	4	70	0	0	70	0	0	66	0	0
	LA	73	0	2	73	0	2	72	0	1	72	0	1	70	0	0	70	0	0	68	0	0
		74	0	5	75	0	5	75	0	4	75	0	4	/3	0	4	/3	0	3	70	0	0
	IVIN MO	64	0	0	64	0	0	64	0	0	64	0	0	62	0	0	62	0	0	60	0	0
	NIC	72	0	2	72	0	2	72	0	2	/2	0	2	69	0	0	69	0	0	67	0	0
	IVIS	59	0	0	69	0	0	69	0	0	69	0	0	67	0	0	67	0	0	60	0	0
		70	0	2	74	0	0	00 72	0	2	00	0	2	60 60	0	0	60 60	0	0	65	0	0
	UT CC	73	0	3	74	0	4	62	0	2	62	0	3	00 F0	0	0	50	0	0	65	0	0
		63 60	0	0	03 60	0	0	67	0	0	67	0	0	50	0	0	50	0	0	54	0	0
		67	0	0	67	0	0	67	0	0	67	0	0	64	0	0	62	0	0	01	U	0
	W/I	77	1	3	77	1	2	70	1	1	77	1	6	7/	0	1	76	1	2	62	0	0
	VVI \\/\/	69	1	5	67	1	5	67	1	4	67	1	0	64	0	1	6/	1	3	71	0	1
	VV V	00	U	U	0/	U	U	0/	U	0	0/	U	U	04	U	U	04	U	U	/1	U	T

St.	AQS Code	DVC	Al	Alpha Alpha 2			Beta 2									
			20)18	20	018		20	17			20	20		20	23
			EPA G	uidance	EPA G	uidance	EPA G	uidance	Less	Water	EPA G	uidance	Less	Water	EPA Gu	uidance
CT.	00010017	00.0	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF
CI	90010017	80.3	80	0.996	80	0.997	74	0.967	73	0.911	76	0.950	83 71	1.042	/Z	0.900
	90011123	84.2	75	0.898	72	0.009	74	0.912	74	0.912	71	0.875	71	0.875	72	0.850
	90013007	83.7	8/	1 009	84	1 013	83	1 000	76	0.908	83	0.911	75	0.894	81	0.874
	90031003	73.7	65	0.896	65	0.890	66	0.897	66	0.912	61	0.337	61	0.910	58	0.303
	90050005	70.3	63	0.000	62	0.895	62	0.895	62	0.895	59	0.850	59	0.850	57	0.755
	90070007	79.3	70	0.894	70	0.889	70	0.887	70	0.887	66	0.843	66	0.843	63	0.801
	90090027	74.3	68	0.920	69	0.938	67	0.915	67	0.911	67	0.912	64	0.873	65	0.876
	90099002	85.7	76	0.891	77	0.899	77	0.907	76	0.895	73	0.862	73	0.857	69	0.813
	90110124	80.3	70	0.873	71	0.887	73	0.912	72	0.902	70	0.876	74	0.923	66	0.824
	90131001	75.3	67	0.895	66	0.888	67	0.892	67	0.892	63	0.839	63	0.839	59	0.796
CT Max	(84	1.009	84	1.013	83	1.000	76	0.912	83	0.997	83	1.042	81	0.969
DC	110010041	76	67	0.882	66	0.879	65	0.861	65	0.861	62	0.821	62	0.821	58	0.771
	110010043	80.7	71	0.882	70	0.879	69	0.861	69	0.861	66	0.821	66	0.821	62	0.771
DC Max	ĸ		71	0.882	70	0.879	69	0.861	69	0.861	66	0.821	66	0.821	62	0.771
DE	100010002	74.3	67	0.904	67	0.906	66	0.895	65	0.883	63	0.858	62	0.846	60	0.818
	100031007	76.3	68	0.895	68	0.894	67	0.880	67	0.880	64	0.840	64	0.840	61	0.800
	100031010	78	69	0.897	69	0.896	67	0.867	67	0.867	66	0.857	66	0.857	63	0.819
	100031013	77.7	69	0.893	69	0.891	67	0.868	67	0.868	65	0.848	65	0.848	62	0.808
	100032004	75			66	0.891	65	0.868	65	0.868	63	0.848	63	0.848	60	0.809
	100051002	//.3	68	0.887	68	0.886	67	0.873	6/	0.873	64	0.839	64	0.839	61	0.797
	100051003	//./	69	0.896	69	0.900	69	0.895	68	0.883	66	0.854	65	0.848	62	0.807
	250010002	72	65	0.904	66	0.906	66	0.095	-8	0.003	62	0.850	62	0.870	50	0.819
IVIA	250034002	69	62	0.904	62	0.911	62	0.900	-o 62	0.904	60	0.859	60	0.870	58	0.810
	250054002	74	66	0.910	67	0.900	66	0.904	67	0.904	63	0.871	64	0.871	59	0.841
	250031002	77	70	0.919	72	0.938	71	0.926	70	0.913	67	0.877	67	0.881	64	0.838
	250092006	71	61	0.871	62	0.874	65	0.925	63	0.900	54	0.774	60	0.853	49	0.700
	250094005	70	01	0.071	63	0.910	63	0.902	62	0.895	59	0.853	59	0.848	56	0.807
	250095005	69.3	62	0.901	62	0.908	61	0.892	61	0.892	58	0.851	58	0.851	56	0.810
	250130008	73.7	65	0.888	65	0.886	65	0.885	65	0.885	61	0.832	61	0.832	58	0.788
	250150103	64.7	57	0.894	57	0.888	57	0.886	57	0.886	54	0.837	54	0.837	50	0.787
	250154002	71.3	62	0.881	62	0.879	62	0.883	62	0.883	59	0.837	59	0.837	56	0.794
	250170009	67.3	60	0.894	60	0.895	59	0.887	59	0.887	56	0.844	56	0.844	54	0.802
	250171102	67	59	0.887	59	0.887	59	0.881	59	0.881	56	0.841	56	0.841	53	0.800
	250213003	72.3	60	0.840	61	0.856	63	0.881	64	0.886	60	0.835	61	0.852	55	0.773
	250250041	68.3	57	0.839	58	0.851	59	0.876	60	0.888	57	0.838	56	0.835	53	0.779
	250250042	60.7	50	0.839	51	0.855	53	0.880	53	0.887	48	0.801	51	0.853	44	0.730
	250270015	68.3	60	0.892	60	0.890	60	0.885	60	0.885	57	0.844	57	0.844	54	0.802
	250270024	69	60	0.883	60	0.882	60	0.883	60	0.883	57	0.838	57	0.838	55	0.797
MA Ma	240020014	02	70	0.919	72	0.938	71	0.926	70	0.913	67	0.877	67	0.881	64	0.841
IVID	240030014	83	72	0.872	72	0.870	/1	0.851	/1	0.851	68	0.828	68	0.828	64	0.780
	240051007	79	70	0.896	70	0.894	74	0.879	71	0.879	60	0.803	60	0.803	05	0.823
	240053001	80.7 70.7	74	0.920	74	0.924	74	0.924	71	0.892	60	0.854	69	0.801	60	0.800
	240090011	76.2	67	0.920	67	0.922	67	0.923	67	0.879	62	0.804	62	0.833	61	0.031
	240150001	70.3 83	74	0.888	74	0.897	73	0.875	73	0.875	69	0.838	69	0.838	66	0.803
	240130003	79	70	0.897	70	0.895	69	0.877	69	0.877	65	0.833	65	0.833	62	0.795
	240199991	75	70	0.057	68	0.907	67	0.907	65	0.878	64	0.862	63	0.845	62	0.827
	240210037	76.3	67	0.890	67	0.888	67	0.878	67	0.878	64	0.840	64	0.840	61	0.807
	240230002	72	61	0.851	61	0.850	60	0.837	60	0.837	58	0.810	58	0.810	57	0.800
	240251001	90	82	0.912	81	0.909	81	0.908	80	0.894	77	0.862	77	0.860	74	0.823
	240259001	79.3	71	0.898	70	0.894	70	0.888	70	0.891	67	0.846	67	0.857	63	0.803
	240290002	78.7	69	0.888	69	0.886	68	0.876	68	0.876	66	0.848	66	0.848	63	0.809
	240313001	75.7	66	0.883	66	0.881	65	0.869	65	0.869	63	0.835	63	0.835	59	0.787
	240330030	79	68	0.871	68	0.868	68	0.862	68	0.862	65	0.823	65	0.823	61	0.772
	240338003	82.3	72	0.875	71	0.873	70	0.859	70	0.859	67	0.822	67	0.822	63	0.774
	240339991	80			69	0.871	69	0.865	69	0.865	66	0.829	66	0.829	62	0.780

Table 11-2: Monitor summary of base case CMAQ modeling for 2018 Alpha and Alpha 2, 2017 Beta, and 2020 and 2023 Gamma platforms calculated using the "EPA Guidance" and "Less Water" techniques (DVF > 75 ppb highlighted in red, DVF > 70 ppb highlighted in green).

St.	AQS Code	DVC	Al	pha	Alp	Alpha 2 Beta 2						Gamma					
			20	018	2	018		20	17			20	20		20	023	
			EPA G	uidance	EPA G	uidance	EPA G	uidance	Less	Water	EPA G	uidance	Less	Water	EPA G	uidance	
	240420000	70.7	DVF 62	KKF	DVF	KKF	DVF	KKF	DVF 62	KKF	DVF	RRF 0.824	DVF	RKF 0.824		RRF 0.802	
	240430009	72.7	68	0.878	68	0.874	68	0.877	65	0.877	62	0.854	63	0.854	50	0.802	
MD Ma	245100054 ¥	75.7	82	0.928	81	0.926	81	0.924	80	0.894	77	0.864	77	0.865	74	0.831	
ME	230010014	61	56	0.919	56	0.928	54	0.899	55	0.911	51	0.851	51	0.848	49	0.808	
	230031100	51.3			-8	-9	-8	-9	-8	-9	-8	-9	-8	-9			
	230052003	69.3	63	0.912	63	0.913	62	0.898	62	0.909	60	0.871	59	0.856	57	0.825	
	230090102	71.7	66	0.926	68	0.953	65	0.907	65	0.908	62	0.876	62	0.866	60	0.842	
	230090103	66.3	61	0.925	63	0.952	60	0.910	60	0.906	57	0.864	57	0.862	54	0.827	
	230112005	62.7	56	0.899	55	0.891	55	0.892	55	0.892	52	0.833	52	0.833	49	0.790	
	230130004	67.7	62	0.921	63	0.941	60	0.899	60	0.897	57	0.852	57	0.848	55	0.812	
	230173001	54.3	49	0.920	-8	-9	49	0.919	49	0.919	-8	-9	-8	-9			
	230194008	57.7	56	0.010	-8	-9	-8	-9	-8	-9	-8	-9	-8	-9	40	0.907	
	230230008	58.3	50	0.919	55	0.927	53	0.895	54	0.890	51	0.847	51	0.838	49 50	0.807	
	230290013	53	49	0.936	50	0.962	49	0.929	49	0.929	-8	-9	-8	-9	50	0.000	
	230310038	60.3	54	0.901	-8	-9	54	0.898	54	0.898	51	0.846	51	0.846	48	0.804	
	230310040	64.3	58	0.903	58	0.904	57	0.900	57	0.900	54	0.843	54	0.843	51	0.801	
	230312002	73.7	66	0.904	65	0.892	65	0.890	66	0.898	62	0.844	61	0.841	58	0.797	
ME Ma	ĸ		66	0.936	68	0.962	65	0.929	66	0.929	62	0.895	62	0.891	60	0.866	
NH	330012004	62.3	55	0.895	55	0.892	55	0.895	55	0.895	52	0.850	52	0.843	50	0.803	
	330050007	62.3	55	0.888	55	0.884	55	0.887	55	0.887	52	0.844	52	0.844	50	0.806	
	330074001	69.3	64	0.928	63	0.916	64	0.927	64	0.927	62	0.905	62	0.905	60	0.876	
	330074002	59.7	55	0.928	54	0.916	55	0.927	55	0.927	54	0.905	54	0.905	52	0.876	
	330090010	59.7	53	0.903	53	0.900	53	0.902	53	0.902	52	0.872	52	0.872	50	0.838	
	330115001	69	61	0.893	61	0.893	61	0.889	61	0.889	58	0.844	58	0.844	55	0.802	
	330131007	64.7	58	0.904	58	0.901	57	0.896	57	0.896	54	0.838	54	0.838	51	0.796	
	330150014	66	60	0.916	60	0.924	59	0.902	59	0.897	55	0.847	55	0.848	52	0.796	
	330150016	66.3	60	0.916	61	0.924	59	0.902	59	0.897	56	0.847	56	0.848	52	0.795	
	330150018	68			61	0.899	60	0.889	60	0.889	57	0.842	57	0.842	54	0.800	
NH Max	(64	0.928	63	0.924	64	0.927	64	0.927	62	0.905	62	0.905	60	0.876	
NJ	340010006	74.3	66	0.893	67	0.905	66	0.890	65	0.882	61	0.834	63	0.855	58	0.781	
	340030006	77	69	0.901	69	0.900	68	0.891	68	0.891	66	0.864	66	0.864	63	0.822	
	340071001	82.7	74	0.896	73	0.894	72	0.880	72	0.880	70	0.850	70	0.850	66	0.809	
	340110007	72	54	0.903	54	0.902	64	0.889	64	0.889	61	0.855	61	0.855	58	0.817	
	340130003	78 8/13	70	0.903	70	0.905	74	0.890	74	0.890	72	0.852	72	0.852	69	0.821	
	340170006	77	70	0.912	70	0.000	69	0.902	69	0.898	69	0.903	67	0.881	67	0.870	
	340190001	78	69	0.885	68	0.883	68	0.873	68	0.873	65	0.843	65	0.843	62	0.799	
	340210005	78.3	70	0.894	69	0.892	68	0.878	68	0.878	66	0.844	66	0.844	62	0.801	
	340219991	76			67	0.893	66	0.875	66	0.875	63	0.840	63	0.840	60	0.795	
	340230011	81.3	72	0.891	72	0.888	71	0.884	71	0.884	68	0.843	68	0.843	65	0.800	
	340250005	80	72	0.901	72	0.902	71	0.891	69	0.868	69	0.867	67	0.844	66	0.825	
	340273001	76.3	67	0.889	67	0.887	67	0.880	67	0.880	64	0.848	64	0.848	61	0.806	
	340290006	82	72	0.884	72	0.882	72	0.879	72	0.879	69	0.846	69	0.846	65	0.802	
	340315001	/3.3	67	0.915	67	0.917	65 E7	0.899	65 E7	0.899	63	0.868	63	0.868	50 E 2	0.828	
NI Max	340410007	00	75	0 915	75	0.878	74	0.874	74	0.874	72	0.847	72	0.847	69	0.797	
NY	360010012	68	61	0.911	61	0.907	61	0.903	61	0.903	58	0.861	58	0.861	56	0.825	
	360050133	74	75	1.014	75	1.020	71	0.972	68	0.920	68	0.919	66	0.894	64	0.872	
	360130006	73.3	66	0.908	66	0.904	66	0.913	65	0.899	64	0.879	63	0.872	61	0.834	
	360130011	74	66	0.898	66	0.896	66	0.901	66	0.905	64	0.878	64	0.869	61	0.834	
	360150003	66.5	61	0.926	61	0.923	61	0.919	61	0.919	59	0.893	59	0.893	57	0.865	
	360270007	72	63	0.886	63	0.887	64	0.899	64	0.899	60	0.843	60	0.843	58	0.806	
	360290002	71.3	65	0.919	65	0.915	65	0.922	64	0.907	64	0.902	62	0.873	61	0.865	
	260240002	70.0	<i></i>	0.020	-	1.007	-	1.025	-	1.025	-	1 700	-	1 700	50	0.040	
	360310002	/0.3	64	0.920	936	1.807	935	1.835	935	1.835	938	1.760	938	1.760	59	0.848	
	3603370003	07.3	10	0.920	-9	0.904 _0	-8	0.911	۲۵ ۲۵	0-71	59 _8	0.86.U Q_	-8	088.0 0_	57	0.848	
	360410005	66	59	0,904	59	0.898	59	0.903	59	0.903	57	0.874	57	0.874	55	0.842	
	360430005	62		5.504	-8	-9	-8	-9	-8	-9	54	0.882	54	0.882	52	0.852	
	360450002	71.7	63	0.890	62	0.875	65	0.907	65	0.911	60	0.844	63	0.884	57	0.795	
	360530006	67	61	0.922	61	0.919	61	0.917	61	0.917	59	0.885	59	0.885	57	0.854	
	360610135	73.3	73	1.003	74	1.010	70	0.959	67	0.919	67	0.924	65	0.899	64	0.883	

St.	AQS Code	DVC	Alpha A			Alpha 2 Beta 2						Gamma					
			20)18	2	018		20	17			20	. 020		20	23	
			EPA G	uidance	EPA G	uidance	EPA G	uidance	Less	Water	EPA G	uidance	Less	Water	EPA Gu	lidance	
	260624006	72.0	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	
	360631006	72.3	67	0.936	65	0.912	6/	0.934	65	0.900	66	0.918	62	0.869	64	0.887	
	360650004	61.5	50	0.915	55	0.906	50	0.913	50	0.913	54	0.882	54	0.882	52	0.852	
	360671015	69.3	63	0.917	63	0.913	63	0.916	63	0.916	61	0.886	61	0.886	59	0.857	
	360715001	67	60	0.903	60	0.902	60	0.903	60	0.903	57	0.859	57	0.859	55	0.822	
	360750003	58	60	0.890	59	0.880	61	0.902	61	0.909	58	0.861	60	0.885	55	0.815	
	360790005	70	52	0.890	51	0.884	53	0.908	53	0.908	50	0.864	50	0.864	57	0.824	
	360810124	/8	/8	1.002	/8	1.010	74	0.959	/Z	0.926	72	0.924	72	0.930	68	0.882	
	360830004	01 2	60	0.908	60	0.903	50	0.901	50	0.901	57	0.863	57	0.863	55	0.828	
	360830067	01.3 75	()	0.950	()	0.957	/8 67	0.905	67	0.003	79	0.978	71	0.877	/0	0.940	
	360870005	75	60	0.907	60	0.907	67	0.903	67	0.903	65	0.873	65	0.873	62	0.832	
	360910004	67	60	0.903	60	0.900	59	0.894	59	0.894	57	0.862	57	0.862	55	0.825	
	361010003	65.3	61	0.937	60	0.932	60	0.934	60	0.934	58	0.896	58	0.896	56	0.867	
	361030002	83.3	82	0.987	82	0.986	71	0.932	71	0.925	75	0.903	75	0.911	/1	0.857	
	361030004	/8	/1	0.911	/1	0.917	/1	0.920	/1	0.912	68	0.878	68	0.882	65	0.840	
	261020009	79.7	72	0 022	025	1 006	026	1 971	-	1 9//	-	1 952	020	1 701	70	0 805	
	261111005	60	64	0.932	925	0.020	920 63	0.021	62	0.021	927 60	0.878	929 60	0.878	58	0.895	
	261172001	65	50	0.928	57	0.920	50	0.921	58	0.921	56	0.876	56	0.876	54	0.845	
	361192004	75.2	79	1.042	79	1.041	72	0.911	68	0.900	72	0.870	68	0.870	69	0.037	
NV May	, 301192004	75.5	90 90	1.042	20 20	1.041	73	0.976	77	0.911	72	0.907	75	0.914	76	0.923	
	420020008	76.2	71	0.026	70	0.026	70	0.970	70	0.334	67	0.970	67	0.930	65	0.940	
FA	420030008	70.3	<pre>/1 </pre>	0.930	60	0.920	60	0.930	60	0.930	64	0.880	64	0.880	62	0.852	
	420030010	75.7	60	0.930	60	0.920	60	0.930	60	0.930	66	0.880	66	0.830	64	0.852	
	420030007	80.7	74	0.920	72	0.913	72	0.912	72	0.912	00	0.870	00	0.870	04	0.040	
	420031003	7/ 2	68	0.920	67	0.915	67	0.908	67	0.908	62	0.847	62	0.847	60	0.817	
	420030001	74.3	65	0.924	65	0.913	65	0.908	65	0.908	62	0.847	62	0.847	60	0.817	
	420070002	74.7	69	0.925	69	0.927	69	0.922	69	0.922	66	0.000	66	0.000	64	0.866	
	420070003	77.3	67	0.555	66	0.550	66	0.935	66	0.935	64	0.897	64	0.887	61	0.856	
	420070014	72.3	63	0.931	63	0.923	62	0.925	62	0.923	60	0.838	60	0.838	57	0.850	
	420110000	76.3	67	0.880	66	0.005	65	0.861	65	0.870	62	0.820	62	0.820	59	0.750	
	420110011	70.5	67	0.000	67	0.070	65	0.001	65	0.001	63	0.872	63	0.872	61	0.701	
	420130001	80.3	71	0.995	71	0.990	70	0.877	70	0.877	68	0.8/7	68	0.8/7	64	0.805	
	420170012	70.3	66	0.001	65	0.000	63	0.077	63	0.077	60	0.857	60	0.857	58	0.831	
	420270100	71	66	0.932	66	0.931	64	0.000	64	0.000	62	0.876	62	0.876	60	0.847	
	420279991	72	00	0.552	66	0.931	64	0.907	64	0.907	62	0.871	62	0.871	60	0.844	
	420290100	76.3	69	0 905	68	0.904	66	0.867	66	0.867	62	0.872	62	0.872	59	0.782	
	420334000	72.3	68	0.942	67	0.940	65	0.908	65	0.908	63	0.885	63	0.885	61	0.849	
	420430401	69	62	0.909	62	0.907	60	0.875	60	0.875	58	0.846	58	0.846	56	0.816	
	420431100	74 7	67	0.900	67	0.897	64	0.866	64	0.866	61	0.827	61	0.827	59	0 790	
	420450002	75.7	68	0.899	67	0.898	66	0.880	66	0.880	64	0.855	64	0.855	61	0.815	
	420490003	74	65	0.891	66	0.894	66	0.904	67	0.906	65	0.879	64	0.867	61	0.824	
	420550001	67	60	0.905	60	0.903	59	0.883	59	0.883	56	0.846	56	0.846	54	0.818	
	420590002	69	62	0.906	62	0.902	61	0.890	61	0.890	59	0.857	59	0.857	57	0.835	
	420630004	75.7	70	0.930	70	0.926	67	0.898	67	0.898	65	0.866	65	0.866	63	0.834	
	420690101	71	63	0.894	63	0.893	62	0.884	62	0.884	59	0.844	59	0.844	57	0.809	
	420692006	68.7	61	0.894	61	0.893	60	0.884	60	0.884	57	0.844	57	0.844	55	0.809	
	420710007	77	70	0.916	70	0.915	65	0.854	65	0.854	63	0.818	63	0.818	60	0,790	
	420710012	78	71	0.911	70	0.909	66	0.858	66	0.858	63	0.818	63	0.818	61	0.783	
	420730015	71	65	0.918	64	0.912	64	0,910	64	0,910	61	0.863	61	0.863	58	0.823	
	420750100	76			67	0.891	65	0.865	65	0.865	62	0.822	62	0.822	59	0.786	
	420770004	76	67	0 886	67	0.884	66	0.875	66	0.875	63	0.838	63	0.838	60	0 795	
	420791100	65	57	0.888	57	0.887	56	0.867	56	0.867	52	0.815	52	0.815	50	0 782	
	420791101	64.3	56	0.886	56	0.884	56	0.872	56	0.872	53	0.834	53	0.834	51	0.799	
	420810100	67	60	0.908	60	0.907	60	0.898	60	0.898	56	0.846	56	0.846	54	0.810	
	420850100	76.3	68	0.896	68	0.893	68	0.900	68	0.900	65	0.859	65	0.859	60	0.793	
	420890002	66.7	59	0.887	59	0.885	58	0.871	58	0.871	56	0.841	56	0.841	53	0.802	
	420910013	76.3	68	0.900	68	0.899	66	0.870	66	0.870	65	0.855	65	0.855	62	0.815	
	420950025	76	67	0.885	67	0.884	66	0.873	66	0,873	62	0.838	62	0.838	59	0.778	
	420958000	69.7	62	0.890	61	0.889	61	0.877	61	0.877	58	0.837	58	0.837	55	0.793	
	420990301	68.3	63	0.923	62	0.920	60	0.890	60	0.890	58	0.851	58	0.851	56	0.821	
	421010004	66	59	0.905	59	0.904	58	0.886	58	0.886	56	0.857	56	0.857	53	0.817	
	421010024	83.3	75	0.902	75	0.901	73	0.880	73	0.880	70	0.849	70	0.849	67	0.807	
	421011002	80			72	0,901	70	0.880	70	0.880	67	0.849	67	0.849	64	0,806	
	421119991	65			56	0.865	55	0.850	55	0.850	54	0.835	54	0.835	53	0.815	
St.	AQS Code	DVC	Alp	oha	Alp	oha 2		Bet	a 2				Gai	mma			
--------	-----------	------------	--------	--------	----------	---------	-------	----------------	-----	--------	-----------	---------------	---------------	-------	--------	---------	
			EPA GL	idance	EDA G	uidance	EPA G	20 Juidance	1/	W/stor	FPA G	20 uidance	20 ا مدد ۱	Nator	EPA GL	uidance	
			DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	
	421174000	69.7	65	0.935	65	0.933	64	0.920	64	0.920	61	0.883	61	0.883	59	0.849	
	421250005	70	63	0.914	63	0.908	63	0.902	63	0.902	60	0.857	60	0.857	58	0.834	
	421250200	70.7	64	0.907	63	0.900	63	0.901	63	0.901	60	0.855	60	0.855	58	0.830	
	421255001	70.3	64	0.922	64	0.915	64	0.919	64	0.919	61	0.871	61	0.871	59	0.845	
	421290006	71.7	66	0.921	65	0.913	65	0.910	65	0.910	62	0.869	62	0.869	60	0.837	
	421290008	71	64	0.911	64	0.905	63	0.898	63	0.898	61	0.860	61	0.860	58	0.830	
	421330008	72.3	66	0.920	66	0.919	62	0.858	62	0.858	59	0.819	59	0.819	57	0.788	
DA May	421330011	74.3	6/	0.915	6/	0.913	63	0.859	63	0.859	61	0.826	61	0.826	58	0.791	
	440020002	72 7	67	0.942	75 67	0.940	73	0.935	73	0.935	70	0.890	70	0.890	67	0.800	
NI	440030002	75.7	67	0.910	67	0.915	66	0.902	66	0.902	62	0.804	62	0.804	50	0.802	
	440071010	76.3	68	0.898	69	0.911	69	0.899	69	0.830	66	0.852	65	0.857	62	0.803	
RI Max	110050007	7010	68	0.911	69	0.914	69	0.906	69	0.911	66	0.868	65	0.864	62	0.823	
VA-	510130020	81.7	72	0.888	72	0.886	71	0.876	71	0.876	68	0.841	68	0.841	64	0.792	
OTR	510590030	82.3	72	0.884	72	0.882	72	0.879	72	0.879	69	0.849	69	0.849	66	0.803	
	511071005	73	65	0.899	65	0.896	64	0.889	64	0.889	61	0.841	61	0.841	58	0.800	
	511530009	70	63	0.905	63	0.903	62	0.897	62	0.897	59	0.855	59	0.855	57	0.821	
	515100009	80	70	0.883	70	0.881	69	0.866	69	0.866	66	0.837	66	0.837	63	0.791	
VA Max	F000000	ca -	72	0.905	72	0.903	72	0.897	72	0.897	69	0.855	69	0.855	66	0.821	
VT	500030004	63.7	57	0.910	57	0.905	57	0.904	57	0.904	54	0.860	54	0.860	52	0.824	
	10221002	65	57	0.910	57	0.905	57	0.904	57	0.904	54	0.860	54	0.860	52	0.824	
AL	10331002	65	49	0.754	48	0.751	47	0.737	47	0.737	44 55	0.685	44	0.685	42	0.657	
	10510001	66.3	57	0.868	57	0.861	56	0.854	56	0.854	54	0.845	54	0.843	51	0.815	
	10510001	61.7	52	0.853	52	0.853	50	0.848	50	0.848	50	0.816	50	0.816	48	0.784	
	10730023	72.3	62	0.865	62	0.864	61	0.854	61	0.854	58	0.814	58	0.814	55	0.772	
	10731003	72	63	0.878	63	0.877	61	0.860	61	0.860	59	0.826	59	0.826	56	0.789	
	10731005	75.3	65	0.870	65	0.870	64	0.859	64	0.859	60	0.803	60	0.803	57	0.760	
	10731009	72	65	0.908	65	0.912	63	0.879	63	0.879	58	0.811	58	0.811	56	0.786	
	10731010	73.7	62	0.854	62	0.854	62	0.849	62	0.849	59	0.809	59	0.809	56	0.771	
	10732006	75	63	0.850	63	0.850	63	0.848	63	0.848	60	0.802	60	0.802	56	0.751	
	10735002	72	62	0.867	62	0.867	61	0.851	61	0.851	58	0.812	58	0.812	55	0.775	
	10735003	/1	62	0.883	62	0.887	62	0.874	62	0.874	58	0.831	58	0.831	5/	0.803	
	10736002	76.7	60	0.871	66	0.871	65	0.852	65	0.852	61	0.807	61	0.807	58	0.767	
	11011002	67.3	57	0.857	57	0.857	57	0.854	57	0.854	5/	0.808	5/	0.808	51	0.771	
	11030011	68.7	60	0.837	60	0.837	60	0.802	60	0.802	58	0.808	58	0.808	56	0.702	
	11130002	66	57	0.869	57	0.869	57	0.868	57	0.868	54	0.826	54	0.826	52	0.789	
	11170004	73.3	61	0.842	61	0.842	61	0.834	61	0.834	57	0.787	57	0.787	54	0.741	
	11190002	61	55	0.911	55	0.911	52	0.866	52	0.866	51	0.847	51	0.847	50	0.828	
	11250010	58.7	51	0.884	51	0.884	50	0.862	50	0.862	48	0.829	48	0.829	46	0.796	
AL Max			66	0.911	66	0.912	65	0.884	65	0.884	61	0.847	61	0.847	58	0.828	
AR	50350005	77.3	68	0.886	68	0.886	67	0.867	67	0.867	63	0.827	63	0.827	61	0.797	
	51010002	68	64	0.947	64	0.942	66	0.976	66	0.976	64	0.948	64	0.948	63	0.937	
	51130003	72.3	72	0.997	72	0.996	72	0.997	72	0.997	-8	-9	-8	-9		0 700	
	51190007	72.3	64	0.885	64	0.885	64	0.886	64	0.886	60	0.833	60	0.833	57	0.790	
	51191002	73.7	65	0.890	65	0.890	65	0.898	65	0.898	62	0.855	62	0.855	59	0.797	
	51430005	71	70	0.997	70	0.997	70	1 000	70	1 000	-8	-9	-8	-9	55	0.014	
AR Max	51150005	71	72	0.997	72	0.997	72	1.000	72	1.000	64	0.948	64	0.948	63	0.937	
GA	130210012	72.3	60	0.838	60	0.839	60	0.837	60	0.837	57	0.792	57	0.792	54	0.751	
	130510021	63.3	57	0.902	57	0.912	57	0.905	57	0.905	53	0.847	53	0.847	51	0.814	
	130550001	66.3	57	0.866	57	0.870	57	0.868	57	0.868	54	0.818	54	0.818	51	0.777	
	130590002	70.7	59	0.845	59	0.845	59	0.843	59	0.843	55	0.781	55	0.781	51	0.727	
	130670003	76	63	0.835	64	0.844	63	0.842	63	0.842	59	0.789	59	0.789	56	0.738	
	130730001	68.7	59	0.866	59	0.867	59	0.869	59	0.869	55	0.803	55	0.803	52	0.761	
	130770002	65	52	0.808	52	0.808	52	0.802	52	0.802	49	0.755	49	0.755	46	0.714	
	130850001	66.3	56	0.853	56	0.851	56	0.855	56	0.855	52	0.797	52	0.797	49	0.750	
	130890002	//.3	65	0.849	65	0.849	64	0.829	64	0.829	61	0.789	61	0.789	56	0.730	
	131210055	/3.3 Q1	68	0.830	68	0.840	68	0.834	68	0.834	50	0.775	50	0.775	52	0.720	
	131270006	60	56	0.948	57	0.963	57	0.042	57	0.954	55	0.917	56	0.943	53	0.898	
	131350002	76.7	64	0.839	64	0.838	64	0.838	64	0.838	58	0.761	58	0.761	53	0.699	
	131510002	80	67	0.849	67	0.849	67	0.843	67	0.843	63	0.793	63	0.793	59	0.744	

$ \begin{array}{ $	
EPA Guidance EPA Guidance EPA Guidance EPA Guidance Less Water RRF DVF RRF DRF<	2023
DVF RRF DRF DRF DRF <th>PA Guidance</th>	PA Guidance
IA2130003 70.3 60 0.859 60 0.857 59 0.852 59 0.852 55 0.793 55 0.793 132150008 66 57 0.869 57 0.869 57 0.869 54 0.827 54 0.827 132230003 70.7 62 0.879 62 0.885 61 0.873 61 0.873 58 0.831 58 0.831 132319991 72 60 0.844 60 0.840 60 0.840 57 0.795 57 0.795 132450091 70 60 0.857 60 0.848 60 0.840 60 0.844 56 0.814 132470001 77 64 0.837 64 0.834 64 0.834 60 0.780 60 0.780 132611001 64.7 57 0.885 57 0.884 57 0.884 54 0.845 54 0.845<	VF RRF
International Interna International International<	52 0.744
GA Max 68 0.948 66 0.887 66 0.884 60 0.840 60 0.840 57 0.795 57 0.795 132319991 72 60 0.844 60 0.840 60 0.840 57 0.795 57 0.795 132450091 70 60 0.857 60 0.868 60 0.860 56 0.814 56 0.814 132470001 77 64 0.837 64 0.834 64 0.834 60 0.780 60 0.780 132611001 64.7 57 0.885 57 0.887 57 0.884 54 0.845 54 0.845 132611001 64.7 57 0.885 57 0.887 57 0.884 54 0.845 54 0.845 14 190170011 64 62 0.974 62 0.941 62 0.941 61 0.922 61 0.961	55 0.791
GA Max 68 0.948 64 0.837 64 0.837 64 0.834 56 0.814 56 0.814 132450001 77 64 0.837 64 0.834 64 0.834 60 0.780 60 0.780 132450001 77 64 0.837 64 0.834 64 0.834 56 0.814 54 0.845 54 0.845 132611001 64.7 57 0.885 57 0.887 57 0.884 57 0.884 54 0.845 54 0.845 132611001 64.7 57 0.885 57 0.887 57 0.884 54 0.845 54 0.845 132611001 64.7 57 0.885 68 0.956 68 0.954 63 0.917 63 0.943 190170011 64 62 0.974 62 0.941 62 0.941 61 0.922 61 <th>54 0 751</th>	54 0 751
132470001 77 64 0.837 64 0.834 64 0.834 60 0.780 60 0.780 132611001 64.7 57 0.885 57 0.887 57 0.884 57 0.884 54 0.845 54 0.845 IA 190170011 64 62 0.974 62 0.981 62 0.976 62 0.976 61 0.961 61 0.961 190450021 66.7 63 0.948 63 0.948 62 0.976 62 0.976 61 0.961 61 0.961 190450021 66.7 63 0.948 63 0.948 62 0.941 62 0.941 61 0.922 61 0.922 191130028 64.3 61 0.962 61 0.962 61 0.962 60 0.939 60 0.939 191130030 62.7 60 0.965 60 0.966 58	54 0.777
I32611001 64.7 57 0.885 57 0.887 57 0.884 57 0.884 54 0.845 54 0.845 GA Max 68 0.948 68 0.963 68 0.956 68 0.954 63 0.917 63 0.943 IA 190170011 64 62 0.974 62 0.981 62 0.976 62 0.976 61 0.961 61 0.961 190450021 66.7 63 0.948 63 0.948 62 0.941 62 0.941 61 0.922 61 0.922 191130028 64.3 61 0.962 61 0.962 61 0.962 60 0.939 60 0.939 191130033 64 61 0.960 61 0.955 60 0.966 60 0.966 58 0.941 58 0.941 191130030 59.7 58 0.980 58 0.983 </th <th>56 0.727</th>	56 0.727
GA Max 68 0.948 68 0.963 68 0.956 68 0.954 63 0.917 63 0.943 IA 190170011 64 62 0.974 62 0.981 62 0.976 62 0.976 61 0.961 61 0.961 190450021 66.7 63 0.948 63 0.941 62 0.941 62 0.941 61 0.922 61 0.922 191130028 64.3 61 0.962 61 0.959 60 0.939 60 0.939 191130033 64 61 0.962 61 0.959 60 0.939 60 0.939 191130040 62.7 60 0.965 60 0.966 60 0.966 58 0.941 58 0.943 -8 -9 -8 -9 191530030 59.7 58 0.980 58 0.983 58 0.983 58 0.931	52 0.815
IA 190170011 64 62 0.974 62 0.981 62 0.976 62 0.976 61 0.961 61 0.961 190450021 66.7 63 0.948 63 0.948 62 0.941 62 0.941 61 0.922 61 0.922 191130028 64.3 61 0.962 61 0.962 61 0.962 60 0.939 60 0.939 191130033 64 61 0.960 61 0.955 61 0.959 60 0.939 60 0.939 191130040 62.7 60 0.965 60 0.966 60 0.966 58 0.941 58 0.941 58 0.943 -8 -9 -8 -9 191530030 59.7 58 0.980 58 0.983 58 0.983 -8 -9 -8 -9 191630014 63 59 0.942 59	59 0.898
190450021 66.7 63 0.948 63 0.948 62 0.941 62 0.941 61 0.922 61 0.922 191130028 64.3 61 0.962 61 0.962 61 0.962 61 0.962 60 0.939 60 0.939 191130033 64 61 0.960 61 0.958 61 0.959 60 0.939 60 0.939 191130040 62.7 60 0.965 60 0.966 60 0.966 58 0.941 58 0.941 58 0.941 58 0.941 58 0.941 58 0.941 57 0.919 57 0.919 191530014 63 59 0.942 59 0.941 58 0.931 58 0.931 57 0.919 57 0.919 191630015 66 61 0.938 61 0.938 61 0.938 60 0.920	60 0.952
191130028 64.3 61 0.962 61 0.962 61 0.962 61 0.962 61 0.962 60 0.939 60 0.939 191130033 64 61 0.960 61 0.958 61 0.959 60 0.939 60 0.939 191130040 62.7 60 0.965 60 0.966 60 0.966 58 0.941 58 0.941 191530030 59.7 58 0.980 58 0.983 58 0.983 -8 -9 -8 -9 191630014 63 59 0.942 59 0.941 58 0.931 57 0.919 57 0.919 191630015 66 61 0.938 61 0.938 61 0.938 60 0.920 60 0.920	60 0.901
191130033 64 61 0.960 61 0.958 61 0.959 61 0.959 60 0.939 60 0.939 191130040 62.7 60 0.965 60 0.966 60 0.966 58 0.941 58 0.941 191530030 59.7 58 0.980 58 0.983 58 0.983 -8 -9 -8 -9 191630014 63 59 0.942 59 0.941 58 0.931 57 0.919 57 0.919 191630015 66 61 0.938 61 0.938 61 0.938 60 0.920 60 0.920	59 0.919
191130040 62.7 60 0.965 60 0.965 60 0.966 58 0.941 58 0.941 191530030 59.7 58 0.980 58 0.983 58 0.983 -8 -9 -8 -9 191630014 63 59 0.942 59 0.941 58 0.931 58 0.931 57 0.919 57 0.919 191630015 66 61 0.938 61 0.938 61 0.938 60 0.920 60 0.920	58 0.916
191530030 53.7 58 0.980 58 0.980 58 0.983 58 0.983 -8 -9 -8 -9 191630014 63 59 0.942 59 0.941 58 0.931 58 0.931 57 0.919 57 0.919 191630015 66 61 0.938 61 0.938 61 0.938 60 0.920 60 0.920	57 0.916
191030014 0.5 0.5 0.542 0.5 0.541 56 0.511 57 0.515 57 0.515 191630015 66 61 0.938 61 0.938 61 0.938 60 0.920 60 0.920	56 0.808
	59 0.898
191690011 61.3 60 0.985 60 0.985 60 0.981 60 0.981 -8 -9 -8 -9	55 01057
191770006 65.7 64 0.977 64 0.979 63 0.972 63 0.972 62 0.957 62 0.957	62 0.945
191810022 63.7 63 0.996 63 0.996 63 0.995 63 0.995 -8 -9 -8 -9	
IA Max 64 0.996 64 0.996 63 0.995 63 0.995 62 0.961 62 0.961	62 0.952
IL 170010007 67 63 0.941 64 0.961 63 0.950 63 0.950 61 0.922 61 0.922	59 0.894
170190007 71 65 0.921 64 0.915 63 0.896 63 0.896	62 0.873
170230001 66 60 0.911 59 0.907 60 0.914 60 0.914 55 0.846 55 0.846	54 0.827
170310001 72 67 0.932 67 0.932 67 0.933 67 0.933 66 0.917 66 0.917	63 0.888
170310032 77.7 67 0.868 65 0.846 68 0.883 72 0.931 66 0.852 71 0.924	62 0.807
1/0310064 /1.3 61 0.868 60 0.846 62 0.883 66 0.931 60 0.852 65 0.924	57 0.808
1/03100/6 /1./ 66 0.92/ 66 0.92/ 6/ 0.93/ 6/ 0.93/ 6/ 0.862 65 0.919	58 0.820 49 0.712
17031105 05.7 35 0.794 35 0.774 39 0.635 05 0.945 35 0.705 02 0.900	64 0.910
170314002 71.7 57 0.806 58 0.813 60 0.848 67 0.944 55 0.776 66 0.931	52 0.725
170314007 65.7 53 0.816 52 0.799 55 0.844 61 0.942 50 0.766 59 0.906	45 0.699
170314201 75.7 61 0.816 939 1.599 936 1.687 928 1.884 942 1.532 931 1.812	52 0.699
170317002 76 60 0.800 58 0.776 64 0.846 71 0.941 57 0.756 68 0.898	51 0.674
170436001 66.3 62 0.942 62 0.938 62 0.942 62 0.942 61 0.930 61 0.930	60 0.905
170491001 68.3 62 0.911 61 0.907 61 0.901 61 0.901 59 0.865 59 0.865	57 0.840
170550002 74.3 69 0.937 69 0.941 68 0.927 68 0.927 66 0.895 66 0.895	65 0.879
	61 0.900
170890005 69 7 66 0 959 66 0 956 66 0 953 66 0 953 64 0 923 64 0 923	62 0.895
170971007 79.3 61 0.772 61 0.774 64 0.813 73 0.923 60 0.759 68 0.868	54 0.684
171110001 69.7 65 0.940 65 0.946 66 0.951 66 0.951 64 0.927 64 0.927	62 0.902
171132003 70.3 64 0.921 65 0.925 64 0.920 64 0.920 62 0.893 62 0.893	61 0.876
171150013 71.3 65 0.912 65 0.917 64 0.906 64 0.906 64 0.900 64 0.900	62 0.881
171170002 71.3 62 0.882 63 0.886 62 0.871 62 0.871 59 0.839 59 0.839	57 0.807
171190008 77 69 0.897 68 0.894 68 0.888 68 0.888 65 0.853 65 0.853	63 0.827
171191009 78.3 68 0.872 68 0.873 68 0.876 68 0.876 65 0.833 65 0.833	62 0.792
1/119300/ /6./ 68 0.89/ 68 0.894 68 0.888 68 0.888 65 0.853 65 0.853	63 0.828
171129991 /b b/ 0.892 b/ 0.882 b/ 0.882 b3 0.842 b3 0.842	54 0.803
171430024 01.7 57 0.923 57 0.925 57 0.924 57 0.924 53 0.899 53 0.899 171431001 70 7 65 0.925 65 0.925 65 0.924 65 0.924 63 0.899 63 0.899	62 0.878
171570001 67.7 63 0.932 63 0.932 60 0.887 60 0.887 58 0.857 58 0.857	56 0.830
171613002 58.3 54 0.941 54 0.938 54 0.938 54 0.938 53 0.920 53 0.920	52 0.897
171630010 74.7 66 0.888 66 0.888 65 0.880 65 0.880 61 0.826 61 0.826	57 0.772
171670014 72 64 0.897 64 0.890 64 0.890 62 0.864 62 0.864	60 0.839
171971011 64 60 0.943 60 0.943 60 0.943 60 0.943 58 0.919 58 0.919	57 0.892
172012001 67.3 63 0.938 62 0.934 62 0.933 62 0.933 61 0.909 61 0.909	59 0.889
IL Max 69 0.959 69 0.961 68 0.953 73 0.953 66 0.930 71 0.931	65 0.910
IN 180030002 68.3 61 0.900 61 0.898 61 0.906 61 0.906 59 0.868 59 0.868	56 0.830
180030004 69.3 62 0.904 62 0.898 62 0.908 62 0.908 60 0.868 60 0.868 180110001 73.2 65 0.002 65 0.002 65 0.005 65 0.005 61 0.055 61 0.055	5/ 0.834
	59 0.822
	61 0 70 <i>4</i>
180350010 68.7 60 0.882 60 0.879 61 0.890 61 0.890 57 0.837 57 0.837	55 0.801

St.	AQS Code	DVC	Alp	oha	Alp	oha 2		Bet	a 2				Gai	mma		122
			ERA G	uidance	EPA G	uidance	FPA G	20 Luidance		Water	FPA G	20 Luidance		Water	EPA G	uidance
			DVF	RRF	DVE	RRF	DVE	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF
	180390007	67.7	62	0.919	61	0.915	61	0.912	61	0.912	59	0.881	59	0.881	57	0.852
	180431004	76	67	0.884	67	0.886	66	0.872	66	0.872	64	0.843	64	0.843	60	0.792
	180550001	77	70	0.921	70	0.920	71	0.925	71	0.925	66	0.860	66	0.860	65	0.848
	180570006	71	63	0.894	63	0.890	63	0.890	63	0.890	59	0.839	59	0.839	57	0.806
	180590003	66.7	59	0.890	58	0.883	60	0.901	60	0.901	56	0.844	56	0.844	53	0.808
	180630004	67	59	0.888	59	0.891	60	0.899	60	0.899	57	0.861	57	0.861	55	0.824
	180690002	65	59	0.909	58	0.907	59	0.919	59	0.919	56	0.874	56	0.874	54	0.834
	180/10001	66	59	0.908	59 61	0.903	60	0.913	60	0.913	56	0.852	50	0.852	54	0.827
	180810002	73	01	0.694	66	0.890	66	0.901	66	0.901	61	0.835	61	0.835	61	0.820
	180890022	66.7	58	0.883	57	0.862	58	0.884	61	0.924	56	0.847	61	0.923	53	0.801
	180890030	69.7	61	0.878	60	0.873	62	0.890	65	0.934	59	0.857	63	0.916	57	0.819
	180892008	68	59	0.878	59	0.873	60	0.890	63	0.934	58	0.857	62	0.916	55	0.819
	180910005	79.3	69	0.882	69	0.882	72	0.909	73	0.924	68	0.868	71	0.901	65	0.826
	180910010	69.7	62	0.902	62	0.902	64	0.919	64	0.925	60	0.867	62	0.900	57	0.822
	180950010	68.3	60	0.880	60	0.879	60	0.889	60	0.889	57	0.843	57	0.843	55	0.805
	180970050	72.7	65	0.894	64	0.893	66	0.909	66	0.909	61	0.844	61	0.844	58	0.806
	180970057	69	61	0.899	61	0.897	62	0.911	62	0.911	60	0.874	60	0.874	58	0.846
	180970073	/2 60.7	64	0.897	64	0.894	65	0.914	65	0.914	61	0.859	61	0.859	59	0.825
	18109/00/8	69.7	61	0.899	60	0.897	61	0.911	61	0.911	59	0.874	59	0.874	59	0.847
	181030003	72 7	67	0.887	67	0.880	67	0.837	67	0.837	57	0.802	57	0.802	55	0.823
	181270024	70.3	61	0.881	61	0.873	63	0.896	64	0.917	59	0.853	62	0.895	56	0.807
	181270026	63	57	0.909	57	0.908	58	0.921	58	0.921	56	0.895	56	0.895	54	0.864
	181290003	70.3	64	0.920	64	0.917	64	0.923	64	0.923	60	0.860	60	0.860	58	0.835
	181410010	62.7	58	0.931	58	0.926	58	0.931	58	0.931	56	0.894	56	0.894	54	0.861
	181410015	69.3	63	0.916	63	0.919	63	0.923	63	0.923	61	0.889	61	0.889	60	0.866
	181411007	64	58	0.916	58	0.919	59	0.923	59	0.923	56	0.889	56	0.889	55	0.867
	181450001	74	65	0.885	65	0.889	67	0.908	67	0.908	63	0.862	63	0.862	61	0.830
	181630013	71.7	67	0.916	67	0.915	68	0.920	68	0.920	60	0.850	60	0.850	59 61	0.826
	181670018	65.7	58	0.918	58	0.914	59	0.928	59	0.928	54	0.830	54	0.830	52	0.851
	181670024	64	56	0.880	56	0.878	57	0.905	57	0.905	52	0.817	52	0.817	50	0.791
	181730008	71	66	0.938	66	0.935	66	0.938	66	0.938	62	0.883	62	0.883	61	0.865
	181730009	69.7	64	0.931	64	0.927	64	0.923	64	0.923	61	0.881	61	0.881	59	0.859
	181730011	71	66	0.938	66	0.937	66	0.940	66	0.940	61	0.866	61	0.866	60	0.847
IN Max			70	0.938	70	0.937	72	0.940	73	0.940	68	0.895	71	0.923	65	0.867
KY	210130002	63.3	56	0.898	57	0.901	56	0.889	56	0.889	54	0.858	54	0.858	52	0.829
	210150003	68	61	0.905	61	0.902	61	0.905	61	0.905	57	0.838	57	0.838	55	0.812
	210190017	/0	63	0.902	62	0.897	61	0.878	61	0.878	58	0.840	58	0.840	57	0.817
	210290008	72.3	68	0.913	68	0.909	66	0.897	66	0.897	63	0.877	63	0.877	60	0.837
	210373002	67	60	0.896	59	0.894	58	0.873	58	0.873	54	0.814	54	0.814	53	0.802
	210470006	70.7	62	0.887	62	0.887	62	0.883	62	0.883	55	0.783	55	0.783	54	0.771
	210590005	76.3	71	0.939	71	0.935	71	0.936	71	0.936	62	0.825	62	0.825	61	0.803
	210610501	72	63	0.887	64	0.897	63	0.887	63	0.887	59	0.824	59	0.824	57	0.793
	210670012	71.3	63	0.890	63	0.885	63	0.888	63	0.888	60	0.844	60	0.844	57	0.812
	210890007	69.7	63	0.904	62	0.901	62	0.899	62	0.899	58	0.844	58	0.844	57	0.821
	210910012	73.7	69	0.946	69	0.940	69	0.940	69	0.940	61	0.830	61	0.830	59	0.811
	210930006	70.3	63	0.900	62	0.893	62	0.889	62	0.889	60	0.861	60	0.861	58	0.825
	211010014	/6.3	/1	0.932	70	0.930	/1	0.932	/1	0.932	65	0.855	65	0.855	63	0.835
	211110027	77 2	09 70	0.901	08 70	0.896	60 03	0.894	60 60	0.894	66	0.850	66	0.850	62	0.805
	211110051	82	74	0.909	74	0.904	73	0.899	73	0.899	70	0.855	70	0.855	66	0.807
	211130001	70	63	0.901	62	0.896	61	0.882	61	0.882	60	0.867	60	0.867	59	0.844
	211390003	72.3	67	0.935	67	0.938	66	0.924	66	0.924	64	0.894	64	0.894	63	0.880
	211451024	73.7	69	0.942	70	0.953	69	0.949	69	0.949	66	0.907	66	0.907	65	0.893
	211850004	82	71	0.875	71	0.872	71	0.876	71	0.876	67	0.826	67	0.826	63	0.779
	211930003	65.3	62	0.954	62	0.952	58	0.901	58	0.901	56	0.867	56	0.867	55	0.852
	211950002	65.7	64	0.977	64	0.981	58	0.897	58	0.897	56	0.866	56	0.866	56	0.852
	211990003	66.7	58	0.882	59	0.886	57	0.859	57	0.859	55	0.829	55	0.829	54	0.816
	212130004	69.3	60	0.877	61	0.883	61	0.881	61	0.881	56	0.818	56	0.818	54	0.779
	212218001	69	61	0.895	62 E7	0.902	61 EC	0.889	01 EC	0.889	58	0.853	58	0.853	5/	0.839
	2122/0000	04	50	0.000	57	0.092	30	0.007	20	0.007	52	0.010	52	0.010	30	0.764

St.	AQS Code	DVC	Al	pha	Alp	oha 2		Bet	a 2			20	Ga	mma	24	222
			EDA G	J18 uidanco	EDA G	uidanco	EDA G	20. Luidanco	1/	Water	EDA G	2U Luidanco	120	Wator	EDA G	JZ3 uidanco
			DVF	RRF		RRF		RRF	DVF	RRF		RRF	DVF	RRF		RRF
	212299991	69	BVI		61	0.890	61	0.889	61	0.889	59	0.857	59	0.857	57	0.826
KY Max	к		74	0.977	74	0.981	73	0.949	73	0.949	70	0.907	70	0.907	66	0.893
LA	220150008	77.3	73	0.957	73	0.957	72	0.941	72	0.941	70	0.914	70	0.914	68	0.891
	220170001	74.7	72	0.968	72	0.968	70	0.938	70	0.938	68	0.912	68	0.912	66	0.890
	220730004	63.3	60	0.961	60	0.955	58	0.925	58	0.925	57	0.901	57	0.901	55	0.871
LA Max	c		73	0.968	73	0.968	72	0.941	72	0.941	70	0.914	70	0.914	68	0.891
MI	260050003	82.7	74	0.898	75	0.910	75	0.907	75	0.908	73	0.888	73	0.886	70	0.854
	260190003	73	66	0.906	66	0.906	66	0.915	67	0.918	65	0.893	65	0.892	63	0.866
	260210014	79.7	72	0.904	72	0.912	72	0.908	73	0.918	71	0.903	71	0.892	69	0.868
	260270003	76.7	70	0.916	70	0.924	70	0.917	70	0.917	67	0.881	67	0.881	65	0.849
	260330901	63.5	59	0.944	59	0.945	61	0.962	58	0.923	53	0.844	57	0.908	50	0.792
	260370001	69.3	63	0.915	63	0.912	64	0.924	64	0.924	61	0.882	61	0.882	58	0.840
	260490021	73	66	0.908	66	0.908	66	0.917	66	0.917	64	0.883	64	0.883	60	0.834
	260492001	72.3	65	0.904	65	0.905	65	0.907	65	0.907	62	0.871	62	0.871	59	0.827
	260630007	71.3	64	0.901	64	0.909	64	0.911	64	0.907	62	0.883	63	0.884	60	0.849
	260650012	70.3	64	0.914	63	0.909	64	0.921	64	0.921	61	0.872	61	0.872	58	0.831
	260770008	73.7	67	0.912	67	0.916	67	0.918	67	0.918	64	0.881	64	0.881	62	0.849
	260810020	73	66	0.907	66	0.906	66	0.915	66	0.915	64	0.883	64	0.883	61	0.837
	260810022	72.7	65	0.895	65	0.900	66	0.910	66	0.910	63	0.877	63	0.877	59	0.823
	260910007	75.5	67	0.896	67	0.896	67	0.896	67	0.896	65	0.869	65	0.869	63	0.837
	260990009	/6./	70	0.922	70	0.921	70	0.925	70	0.917	69	0.909	67	0.879	6/	0.881
	260991003	77.3	/1	0.930	/1	0.925	70	0.918	70	0.918	68	0.888	68	0.888	66	0.855
	261010922	72.3	66	0.917	66	0.917	60	0.924	60	0.922	64	0.897	64	0.891	62	0.869
	261050007	/3.3	60	0.909	60	0.909	67	0.921	67	0.921	61	0.890	61	0.890	03 E0	0.809
	261210020	70.7	72	0.925	72	0.913	72	0.951	72	0.931	71	0.896	70	0.090	68	0.857
	261250001	76.2	70	0.917	70	0.918	70	0.917	72	0.914	67	0.890	67	0.880	65	0.857
	261390005	70.3	68	0.924	68	0.924	69	0.918	69	0.918	67	0.889	67	0.888	64	0.800
	261470005	75.3	69	0.907	69	0.907	69	0.917	68	0.917	68	0.888	65	0.888	66	0.847
	261530001	71.7	67	0.935	66	0.926	67	0.938	67	0.938	64	0.901	64	0.901	62	0.876
	261610008	73.3	66	0.907	66	0.903	66	0.904	66	0.904	63	0.871	63	0.871	62	0.849
	261630001	71.7	64	0.899	65	0.907	64	0.899	64	0.899	62	0.876	62	0.876	60	0.841
	261630019	78.7	72	0.921	72	0.925	73	0.935	73	0.935	71	0.904	71	0.904	68	0.870
MI Ma	x		74	0.944	75	0.945	75	0.962	75	0.938	73	0.909	73	0.908	70	0.881
MN	270031001	67	62	0.940	62	0.940	63	0.952	63	0.952	61	0.925	61	0.925	60	0.897
	270031002	66.3	64	0.974	64	0.974	64	0.966	64	0.966	62	0.939	62	0.939	60	0.916
	270177416	55.5			-8	-9	-8	-9	-8	-9	-8	-9	-8	-9		
	270495302	62.5	60	0.967	60	0.974	60	0.970	60	0.970	59	0.952	59	0.952	58	0.936
	270750005	58	57	0.998	-8	-9	57	0.999	57	0.999	-8	-9	-8	-9		
	271095008	63.5	61	0.966	61	0.969	61	0.973	61	0.973	61	0.961	61	0.961	58	0.920
	271370034	61.3			-8	-9	-8	-9	-8	-9	-8	-9	-8	-9		
	271377550	49.7	46	0.943	46	0.944	47	0.947	47	0.956	45	0.920	50	1.008	44	0.887
	271390505	63.5	61	0.971	61	0.973	61	0.973	61	0.973	-8	-9	-8	-9		
	271713201	63.5	61	0.965	61	0.965	61	0.965	61	0.965	-8	-9	-8	-9		
MN Ma	ax	60	64	0.998	64	0.974	64	0.999	64	0.999	62	0.961	62	1.008	60	0.936
MO	290190011	69	66	0.958	66	0.958	66	0.967	66	0.967	63	0.927	63	0.927	62	0.900
	290270002	6/./ 71.7	54	0.957	54	0.957	54	0.958	54	0.958	62	0.925	62	0.925	60	0.886
	290390001	/1./	/1 6E	0.997	/1	0.998	71	0.999	71	0.999	-0	-9	-0	-9	60	0 977
	290770030	71.7	67	0.945	67	0.945	68	0.952	68	0.952	65	0.917	65	0.917	62	0.877
	290990019	76.3	67	0.545	67	0.345	66	0.332	66	0.552	64	0.517	64	0.917	60	0.792
	291130003	70.5	67	0.877	67	0.877	67	0.872	67	0.872	64	0.834	64	0.834	61	0.801
	291370001	68.7	66	0.964	66	0.964	65	0.949	65	0.949	62	0.034	62	0.034	61	0.894
	291570001	74.3	68	0.917	68	0.917	67	0.909	67	0.909	65	0.880	65	0.880	63	0.855
	291831002	82.3	72	0.881	72	0.881	72	0.881	72	0.881	69	0.847	69	0.847	67	0.814
	291831004	77.7	66	0.861	66	0.861	67	0.874	67	0.874	65	0.843	65	0.843	62	0.799
	291860005	72.3	64	0.897	64	0.897	64	0.893	64	0.893	62	0.868	62	0.868	60	0.835
	291890005	71.7	121	1.738	121	1.738	121	1.751	121	1.751	118	1.704	118	1.704	116	1.632
	291890014	79	131	1.712	131	1.712	130	1.706	130	1.706	126	1.651	126	1.651	122	1.557
	292130004	69	67	0.971	67	0.971	67	0.981	67	0.981	65	0.955	65	0.955	65	0.942
	295100085	75.7	65	0.863	65	0.863	65	0.861	65	0.861	62	0.821	62	0.821	58	0.772
MO Ma	ах		72	0.997	72	0.998	72	0.999	72	0.999	69	0.955	69	0.955	67	0.942
MS	280110001	71.7	69	0.965	69	0.969	69	0.962	69	0.962	67	0.943	67	0.943	66	0.933
	280330002	72.3	64	0.897	64	0.897	63	0.874	63	0.874	60	0.841	60	0.841	58	0.811

St.	AQS Code	DVC	Alp	oha	Alp	iha 2		Bet	a 2				Ga	mma		
			20)18	20	018		20	17			20	20		20	23
			EPA Gu	uidance	EPA G	uidance	EPA G	uidance	Less	Water	EPA G	uidance	Less	Water	EPA GL	idance
	280490010	67	58	0.867	58	0.871	58	0.867	58	0.867	55	0.823	55	0.823	52	0.784
	280750003	62.7	57	0.918	57	0.909	56	0.905	56	0.905	54	0.867	54	0.867	52	0.842
	280810005	65	56	0.874	57	0.885	56	0.869	56	0.869	54	0.842	54	0.842	52	0.811
	281619991	63			58	0.925	57	0.917	57	0.917	55	0.883	55	0.883	55	0.879
MS Max	(69	0.965	69	0.969	69	0.962	69	0.962	67	0.943	67	0.943	66	0.933
NC	370030004	66.7	59	0.890	59	0.895	58	0.877	58	0.877	54	0.820	54	0.820	52	0.784
	370110002	63.3	56	0.890	56	0.898	56	0.890	56	0.890	54	0.862	54	0.862	53	0.837
	370210030	66.7	57	0.861	57	0.879	56	0.804	56	0.804	53	0.842	53	0.842	50	0.813
	370270003	66	57	0.874	57	0.878	57	0.870	57	0.870	53	0.806	53	0.806	50	0.767
	370330001	70.7	60	0.863	61	0.866	60	0.858	60	0.858	56	0.803	56	0.803	54	0.764
	370370004	64	55	0.875	55	0.874	54	0.854	54	0.854	50	0.792	50	0.792	48	0.756
	370510008	68.7	59	0.862	59	0.866	58	0.846	58	0.846	54	0.797	54	0.797	52	0.758
	370511003	70.7	60	0.857	60	0.855	59	0.843	59	0.843	54	0.770	54	0.770	51	0.733
	370590003	/1	62	0.882	62	0.880	62	0.874	62	0.874	57	0.807	57	0.807	55	0.780
	370650015	70	58	0.840	58	0.878	58	0.850	58	0.858	54	0.773	57	0.773	51	0.729
	370670022	75.3	65	0.875	65	0.875	65	0.871	65	0.871	62	0.830	62	0.830	59	0.796
	370670028	69.7	61	0.886	62	0.891	61	0.878	61	0.878	59	0.850	59	0.850	56	0.815
	370670030	72.7	63	0.869	63	0.872	62	0.864	62	0.864	60	0.830	60	0.830	57	0.796
	370671008	72.3	63	0.873	63	0.874	62	0.863	62	0.863	59	0.817	59	0.817	56	0.782
	370690001	69.3	59	0.865	59	0.864	58	0.848	58	0.848	55	0.795	55	0.795	52	0.756
	370750001	70.3	64	0.914	64	0.918	63	0.900	63	0.900	60	0.868	60	0.868	59	0.839
	370770001	70.7	65	0.922	65	0.921	62	0.891	62	0.891	59	0.837	59	0.837	56	0.802
	370870008	61	03	0.858	56	0.837	54	0.850	54	0.850	53	0.807	53	0.876	52	0.708
	370870036	67.7	61	0.905	61	0.904	60	0.898	60	0.898	58	0.865	58	0.865	56	0.839
	370990005	67			59	0.894	60	0.898	60	0.898	57	0.860	57	0.860	55	0.833
	371010002	71.7	61	0.854	61	0.853	59	0.836	59	0.836	55	0.772	55	0.772	52	0.728
	371070004	67.7	60	0.887	59	0.885	59	0.880	59	0.880	55	0.827	55	0.827	54	0.799
	371090004	72.7	64	0.883	64	0.888	63	0.867	63	0.867	59	0.821	59	0.821	57	0.785
	371170001	66.3 80	58	0.887	58	0.886	58	0.887	58	0.887	55	0.843	55	0.843	53	0.807
	371190041	75	64	0.850	64	0.859	64	0.856	64	0.856	62	0.823	62	0.823	59	0.788
	371191009	79.7	65	0.826	65	0.824	64	0.813	64	0.813	62	0.780	62	0.780	58	0.739
	371239991	66			56	0.856	55	0.843	55	0.843	52	0.792	52	0.792	49	0.750
	371290002	63	54	0.859	55	0.875	52	0.840	52	0.831	47	0.760	48	0.770	45	0.727
	371450003	71	70	0.986	69	0.983	66	0.940	66	0.940	62	0.880	62	0.880	60	0.848
	371470006	69.7	62	0.897	62	0.895	61	0.884	61	0.884	57	0.827	57	0.827	55	0.798
	371570099	75.2	63	0.890	62	0.886	61	0.870	61	0.870	50 50	0.854	50	0.854	58	0.821
	371590021	75	64	0.803	64	0.808	63	0.857	63	0.857	60	0.792	60	0.792	57	0.752
	371730002	60.7	55	0.906	54	0.906	54	0.898	54	0.898	52	0.869	52	0.869	51	0.842
	371790003	71	59	0.842	59	0.841	59	0.845	59	0.845	57	0.808	57	0.808	54	0.769
	371830014	70.3	60	0.858	60	0.857	58	0.833	58	0.833	54	0.775	54	0.775	50	0.724
	371830016	73	62	0.862	63	0.870	61	0.837	61	0.837	57	0.787	57	0.787	54	0.743
	371990004	69.7	61	0.883	61	0.880	60	0.871	60	0.871	57	0.829	57	0.829	55	0.801
	200020000	72	/ 0	0.986	65	0.983	68	0.940	68	0.940	63	0.880	62	0.880	63 61	0.853
OII	390071001	77.3	68	0.880	67	0.855	68	0.892	68	0.892	66	0.858	67	0.876	60	0.783
	390090004	69	61	0.899	62	0.902	61	0.895	61	0.895	58	0.854	58	0.854	57	0.829
	390170004	77	68	0.891	68	0.890	68	0.885	68	0.885	65	0.846	65	0.846	62	0.808
	390170018	79.7	71	0.891	71	0.896	69	0.877	69	0.877	66	0.835	66	0.835	63	0.794
	390179991	77			67	0.880	68	0.886	68	0.886	63	0.826	63	0.826	61	0.799
	390230001	75	66	0.882	65	0.880	66	0.881	66	0.881	62	0.830	62	0.830	59	0.791
	390230003	74	65	0.879	64	0.870	64	0.876	64	0.876	61	0.829	61	0.829	58	0.789
	390230022	78.7	67	0.859	67	0.859	67	0.859	67	0.859	63	0.805	63	0.805	60	0.765
	390350034	77.7	67	0.866	67	0.865	68	0.885	70	0.907	65	0.844	64	0.833	60	0.783
	390350060	68.5	60	0.883	60	0.882	62	0.916	62	0.916	58	0.857	60	0.880	55	0.803
	390350064	70	63	0.902	63	0.900	64	0.920	65	0.934	61	0.883	63	0.900	58	0.830
	390355002	76.7	66	0.864	66	0.863	67	0.884	69	0.912	61	0.803	67	0.874	56	0.739
	390410002	73	64	0.880	64	0.877	64	0.883	64	0.883	61	0.846	61	0.846	59	0.810
	390479991	72			61	0.859	62	0.865	62	0.865	58	0.819	58	0.819	56	0.778

St.	AQS Code	DVC	Alp	oha	Alp	oha 2		Bet	a 2			20	Ga	mma	20	22
				/18 .idanaa		J18 uidanaa		2U.	1/	Water		2U Lidanaa	120	Motor		23 Jidanaa
									Less	water			Less			
	200400020	80.2		0.800	71		71	6 999	71	0.000	DVF C9	6 6 4 6				0 801
	390490029	00.5 7E	66	0.899	66	0.093	/1 6E	0.000	65	0.000	60	0.040	60	0.040	04 E0	0.001
	390490037	75	60	0.000	60	0.005	63	0.077	63	0.077	60	0.040	60	0.040	59	0.797
	390490081	71	63	0.893	63	0.890	62	0.800	62	0.800	60	0.851	60	0.851	57	0.804
	390550004	74.7	60	0.891	60	0.893	67	0.899	67	0.899	64 F0	0.809	64 F0	0.809	61	0.819
	390570006	/3	73	0.807	74	0.864	72	0.870	73	0.870	59	0.821	59	0.821	50	0.780
	390610006	76.2	73	0.898	74	0.904	67	0.884	67	0.884	60	0.834	60	0.834	60	0.794
	390610010	70.3	70	0.893	71	0.893	67	0.001	67	0.001	64	0.843	64	0.843	62	0.815
	390610040	70.7	70	0.900	(1	0.903	69	0.878	69	0.011	60	0.858	60	0.858	03 F0	0.801
	390810017	70.3	64	0.912	03	0.904	64	0.911	64	0.911	60	0.803	60	0.803	50	0.834
	390830002	/3./	65	0.884	64	0.880	64	0.072	04	0.002	62	0.843	62	0.843	59	0.801
	390850003	80	67	0.842	67	0.843	69	0.872	72	0.903	64 50	0.801	67	0.848	58	0.730
	390850007	/1./	61	0.857	60	0.850	63	0.891	64	0.901	59	0.826	51	0.860	54	0.763
	390870011	5	58	0.902	58	0.898	58	0.895	58	0.895	53	0.823	53	0.823	52	0.800
	390870012	70	63	0.904	63	0.901	62	0.899	62	0.899	59	0.844	59	0.844	57	0.820
	390890005	74.3	60	0.878	64	0.874	65	0.879	65	0.879	6Z	0.837	62	0.837	50	0.791
	390930018	/1./	50	0.845	50	0.843	50	0.800	65	0.920	59	0.851	03 F0	0.000	54	0.764
	390950024	00	59	0.880	59	0.875	59	0.882	60	0.892	50	0.850	50	0.855	54	0.807
	390950027	70.7	60	0.901	59	0.899	60	0.906	60	0.906	58	0.874	58	0.874	55	0.834
	390950034	73.7	63	0.855	62	0.854	64	0.869	65	0.888	61	0.841	62	0.849	58	0.788
	390970007	74.3	64	0.872	64	0.873	65	0.883	65	0.883	61	0.828	61	0.828	58	0.789
	390990013	70.7	63	0.900	63	0.896	63	0.903	63	0.903	61	0.873	61	0.873	57	0.808
	391030004	72.2	64	0.000	61	0.898	62	0.908	62	0.908	60	0.871	60	0.871	50	0.823
	391090005	75.5	64	0.880	64	0.882	60	0.000	60	0.000	62	0.845	62	0.845	59	0.810
	201221001	60.7	61	0.075	61	0.000	61	0.071	61	0.071	60	0.829	60	0.829	50 E 4	0.790
	201251001	77.2	64	0.095	64	0.095	65	0.903	65	0.903	61	0.000	61	0.860	54	0.802
	201510016	72.3	69	0.889	67	0.895	60	0.833	60	0.833	66	0.830	66	0.830	55 61	0.820
	201510010	70.7	64	0.009	64	0.004	65	0.099	65	0.099	62	0.873	62	0.875	59	0.807
	20151/0022	72 2	64	0.830	64	0.834	65	0.903	65	0.903	62	0.808	62	0.808	57	0.705
	391530020	72.3	65	0.830	64	0.850	65	0.835	65	0.833	63	0.800	63	0.800	58	0.755
	391550020	71	63	0.505	63	0.901	63	0.910	63	0.910	61	0.862	61	0.862	56	0.800
	391550011	76.3	68	0.895	68	0.894	68	0.000	68	0.000	65	0.864	65	0.864	61	0.801
	391650007	77.7	67	0.870	67	0.866	67	0.865	67	0.865	63	0.820	63	0.820	60	0.777
	391670004	71.3	60	0.850	60	0.843	61	0.868	61	0.868	56	0.793	56	0.793	56	0.785
	391730003	71.3	64	0.899	63	0.897	64	0.902	64	0.902	62	0.872	62	0.872	59	0.837
OH Max	(73	0.912	74	0.904	72	0.920	72	0.934	68	0.883	68	0.900	65	0.837
SC	450010001	62	53	0.866	53	0.865	53	0.868	53	0.868	49	0.801	49	0.801	47	0.761
	450030003	64.3	55	0.862	55	0.865	55	0.867	55	0.867	50	0.792	50	0.792	48	0.761
	450070005	70	59	0.848	59	0.847	60	0.863	60	0.863	55	0.787	55	0.787	52	0.743
	450150002	62.3	55	0.899	55	0.898	56	0.901	56	0.901	51	0.833	51	0.833	49	0.796
	450190046	64.7	58	0.899	60	0.939	59	0.913	57	0.885	54	0.837	53	0.834	52	0.816
	450250001	64.3	56	0.873	56	0.871	56	0.878	56	0.878	53	0.832	53	0.832	51	0.798
	450290002	61	54	0.888	53	0.885	53	0.880	53	0.880	49	0.811	49	0.811	47	0.780
	450310003	68	59	0.876	59	0.873	59	0.872	59	0.872	55	0.822	55	0.822	53	0.787
	450370001	61.3	52	0.863	52	0.863	53	0.868	53	0.868	50	0.822	50	0.822	48	0.785
	450450016	68	57	0.840	57	0.839	58	0.853	58	0.853	53	0.787	53	0.787	50	0.740
	450451003	65.3	55	0.855	55	0.857	55	0.857	55	0.857	52	0.803	52	0.803	49	0.755
	450770002	69.7	59	0.857	60	0.869	60	0.870	60	0.870	56	0.815	56	0.815	53	0.772
	450790007	67.5	57	0.854	58	0.862	57	0.855	57	0.855	53	0.792	53	0.792	50	0.741
	450790021	60	51	0.858	51	0.863	51	0.863	51	0.863	47	0.796	47	0.796	44	0.748
	450791001	71.7	61	0.854	61	0.862	61	0.855	61	0.855	56	0.792	56	0.792	53	0.741
	450830009	73.7	63	0.858	63	0.855	62	0.853	62	0.853	58	0.795	58	0.795	54	0.744
	450910006	64	54	0.857	55	0.864	54	0.856	54	0.856	51	0.811	51	0.811	49	0.770
SC Max			63	0.899	63	0.939	62	0.913	62	0.901	58	0.837	58	0.834	54	0.816
TN	470010101	70.7	61	0.868	61	0.872	60	0.861	60	0.861	58	0.823	58	0.823	55	0.779
	4/0090101	76.7	66	0.872	66	0.869	66	0.865	66	0.865	63	0.828	63	0.828	60	0.791
	4/0090102	66.3	57	0.870	57	0.873	56	0.860	56	0.860	54	0.823	54	0.823	52	0.784
	4/0259991	62		a c=-	55	0.892	54	0.878	54	0.878	51	0.839	51	0.839	49	0.805
	4/0370011	65.7	57	0.875	57	0.874	57	0.882	57	0.882	54	0.836	54	0.836	52	0.792
	470370026	/0.3	61	0.878	61	0.874	62	0.882	62	0.882	58	0.832	58	0.832	55	0.791
	470651011	/2.3	63	0.875	63	0.876	62	0.870	62	0.870	58	0.813	58	0.813	55	0.773
	470654003	/3.3	63	0.869	63	0.865	62	0.859	62	0.859	58	0.804	58	0.804	55	0.759
	470890002	/4./	64	0.851	64 F0	0.861	64 F0	0.862	64 FO	0.862	60	0.810	50	0.830	5/	0.765
	4/0930021	69	00	0.870	29	0.809	23	0.004	22	0.004	30	0.820	20	0.820	54	0.785

St.	AQS Code	DVC	Alj	pha	Alp	oha 2		Bet	a 2			20	Ga	mma	20	122
			EDA GI	J18 uidanco	EDA G	uidanco	EDA G	20. Luidanco	1/	Water	EDA G	20 Juidanco	20	Mator		123 Jidanco
			DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF
	470931020	71.7	61	0.859	61	0.857	61	0.854	61	0.854	58	0.819	58	0.819	55	0.771
	471050109	72.3	63	0.883	63	0.885	62	0.871	62	0.871	60	0.835	60	0.835	57	0.794
	471210104	71.3	62	0.876	62	0.876	61	0.869	61	0.869	58	0.817	58	0.817	55	0.776
	471490101	68.5	59	0.871	59	0.871	60	0.880	60	0.880	55	0.817	55	0.817	53	0.775
	471550101	74.3	65	0.878	65	0.881	65	0.885	65	0.885	62	0.843	62	0.843	60	0.809
	471570021	76.7	68	0.887	68	0.887	66	0.869	66	0.869	63	0.831	63	0.831	61	0.799
	471570075	78			68	0.880	67	0.862	67	0.862	64	0.831	64	0.831	61	0.792
	471571004	75	65	0.879	66	0.885	64	0.864	64	0.864	61	0.826	61	0.826	59	0.787
	471632002	71.7	64	0.905	64	0.904	62	0.866	62	0.866	62	0.871	62	0.871	61	0.854
	471632003	70.3	63	0.909	63	0.908	60	0.865	60	0.865	61	0.870	61	0.870	59	0.851
	471650007	76.7	66	0.873	66	0.870	67	0.876	67	0.876	63	0.823	63	0.823	59	0.778
	471650101	73	63	0.867	63	0.865	64	0.885	64	0.885	59	0.814	59	0.814	56	0.774
	471870106	70.3	60	0.866	60	0.866	61	0.872	61	0.872	57	0.822	57	0.822	54	0.780
	471890103	71.7	62	0.878	62	0.878	63	0.893	63	0.893	59	0.825	59	0.825	56	0.792
	500070007	61			-8	-9	55	0.907	55	0.907	53	0.881	53	0.881	51	0.849
TN Max			68	0.909	68	0.908	67	0.907	67	0.907	64	0.881	64	0.881	61	0.854
TX	482030002	72.7	71	0.989	71	0.989	68	0.939	68	0.939	-8	-9	-8	-9		
TX Max			71	0.989	71	0.989	68	0.939	68	0.939	-8	-9	-8	-9		
VA	510030001	66.7	59	0.893	59	0.891	59	0.890	59	0.890	56	0.846	56	0.846	54	0.811
(Non	510330001	71.7	63	0.888	63	0.885	62	0.878	62	0.878	59	0.836	59	0.836	56	0.791
	510360002	/5./	6/	0.887	66	0.884	66	0.876	66	0.876	61	0.808	61	0.808	59	0.789
UTR)	510410004	/2	64	0.896	64	0.894	64	0.890	64	0.890	60	0.841	60	0.841	58	0.815
	510610002	62.7	50	0.896	50	0.894	55	0.885	55	0.885	53	0.861	53	0.861	51	0.825
	510690010	60.7	59	0.885	58	0.882	56	0.870	56	0.870	55	0.832	55	0.832	55	0.801
	510719991	72 7	64	0 979	64	0.909	50	0.897	50	0.897	50	0.002	50	0.802	57	0.803
	510850005	75	66	0.878	66	0.875	67	0.804	67	0.884	61	0.813	61	0.813	50	0.783
	511130003	70.7	64	0.0916	64	0.888	64	0.894	64	0.834	62	0.817	62	0.817	60	0.753
	511390004	66.3	60	0.910	60	0.913	60	0.906	60	0.906	58	0.876	58	0.876	56	0.832
	511350004	62	00	0.512	56	0.919	56	0.906	56	0.906	52	0.851	52	0.851	51	0.829
	511611004	67.3	61	0.910	61	0.912	60	0.901	60	0.901	58	0.873	58	0.873	56	0.844
	511630003	62.3	58	0.937	58	0.935	56	0.915	56	0.915	55	0.892	55	0.892	54	0.870
	511650003	66	60	0.914	60	0.913	60	0.909	60	0.909	57	0.875	57	0.875	56	0.849
	511790001	73	63	0.871	63	0.864	62	0.861	64	0.878	59	0.809	62	0.850	55	0.753
	511970002	64.3	59	0.925	59	0.920	58	0.917	58	0.917	56	0.878	56	0.878	54	0.849
	516500008	74	67	0.912	67	0.907	66	0.903	64	0.870	64	0.877	59	0.805	62	0.841
	518000004	71.3	66	0.939	67	0.944	66	0.929	62	0.882	63	0.895	59	0.837	60	0.854
	518000005	69.7	62	0.895	62	0.893	61	0.881	61	0.881	58	0.839	58	0.839	56	0.809
VA Max			67	0.939	67	0.944	67	0.929	67	0.917	64	0.895	62	0.892	62	0.870
WI	550030010	58.3			55	0.950	56	0.969	-8	-9	56	0.977	-8	-9	56	0.969
	550090026	68.3	61	0.902	62	0.912	62	0.911	63	0.935	58	0.855	62	0.911	55	0.810
	550210015	67	63	0.947	63	0.950	63	0.950	63	0.950	61	0.922	61	0.922	60	0.903
	550250041	66.3	61	0.934	62	0.943	61	0.934	61	0.934	60	0.906	60	0.906	58	0.881
	550270001	71.5	66	0.927	67	0.938	66	0.935	66	0.935	64	0.909	64	0.909	63	0.884
	550290004	75.7	67	0.894	67	0.892	68	0.907	69	0.923	66	0.883	67	0.886	64	0.849
	550350014	62			58	0.949	58	0.947	58	0.947	57	0.928	57	0.928	56	0.910
	550390006	70	65	0.930	65	0.941	65	0.934	65	0.934	64	0.919	64	0.919	62	0.896
	550410007	64.7	C A	0.026	-8	-9	60	0.940	60	0.940	59	0.920	59	0.920	58	0.898
	550550002	68.5	64	0.936	64	0.948	64	0.942	64	0.942	62	0.908	62	0.908	60	0.886
	550590019	81	63	0.789	62	0.767	68	0.843	/3	0.913	61	0.760	63	0.787	55	0.683
	550610002	(2.2	67	0.900	67	0.901	60	0.910	69	0.922	67	0.897	67 F0	0.903	04 F0	0.000
	550710007	03.3 79 7	71	0.948	71	0.958	70	0.948	72	0.948	59	0.944	59	0.944	58 20	0.921
	550720012	18.7	/1	0.911	/1	0.913	72 E0	0.918	F0	0.922	70	0.902	/1	0.908	50	0.872
	550790012	60.7	59	0.934	22	0.939	59	0.937	59	0.937	57	0.914	57	0.914	57	0.902
	550790026	7/ 7	55	0.833	50 64	0.840	66	0.871	70	0.950	63	0.820	68	0.009	55	0.700
	550790085	, +. , 80	70	0.871	70	0.870	71	0.892	75	0.947	69	0.863	73	0.922	65	0.789
	550870009	69.3	64	0.932	64	0.934	64	0.934	64	0.934	63	0.912	63	0.912	61	0.887
	550890008	76.3	71	0.932	71	0.940	71	0.936	71	0.936	68	0.899	69	0.905	65	0.861
	550890009	74.7	68	0.920	68	0.915	69	0.930	69	0,932	67	0,901	67	0.901	64	0,866
	551010017	77.7	64	0.827	63	0.820	66	0.851	71	0.916	61	0.797	63	0.811	56	0.727
	551050024	69.5	64	0.934	64	0.933	64	0.935	64	0.935	63	0.910	63	0.910	61	0.885
	551110007	65	62	0.954	62	0.959	61	0.946	61	0.946	60	0.931	60	0.931	59	0.915
	551170006	84.3	77	0.916	77	0.920	77	0.921	77	0.921	74	0.886	76	0.906	71	0.849

St.	AQS Code	DVC	Al	oha	Alp	iha 2		Bet	:a 2				Ga	mma		
			20)18	20	018		20	17			20	20		20)23
			EPA Gi	uidance	EPA G	uidance	EPA G	uidance	Less	Water	EPA G	uidance	Less	Water	EPA G	uidance
			DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF	DVF	RRF
	551199991	63			-8	-9	59	0.942	59	0.942	-8	-9	-8	-9		
	551250001	62			-8	-9	58	0.951	58	0.951	-8	-9	-8	-9		
	551270005	69.3	65	0.938	65	0.946	65	0.949	65	0.949	64	0.931	64	0.931	63	0.909
	551330027	66.7	62	0.933	62	0.934	62	0.940	62	0.940	60	0.903	60	0.903	58	0.874
WI Max	(77	0.954	77	0.959	77	0.969	77	0.951	74	0.977	76	0.944	71	0.969
WV	540030003	68	60	0.886	59	0.882	59	0.872	59	0.872	57	0.840	57	0.840	55	0.809
	540110006	69.3	62	0.897	61	0.894	60	0.879	60	0.879	58	0.840	58	0.840	56	0.815
	540219991	60			56	0.944	54	0.903	54	0.903	51	0.862	51	0.862	50	0.848
	540250003	64.7	59	0.927	59	0.924	59	0.919	59	0.919	57	0.891	57	0.891	56	0.872
	540291004	73	67	0.921	66	0.917	67	0.920	67	0.920	64	0.883	64	0.883	62	0.851
	540390010	72.3	68	0.942	67	0.935	66	0.920	66	0.920	61	0.850	61	0.850	60	0.837
	540610003	69.7	64	0.922	64	0.918	63	0.904	63	0.904	60	0.871	60	0.871	60	0.861
	540690010	72.3	64	0.894	64	0.890	65	0.901	65	0.901	61	0.848	61	0.848	59	0.824
	541071002	68.3	58	0.862	59	0.876	58	0.863	58	0.863	56	0.826	56	0.826	55	0.814
WV Ma	x		68	0.942	67	0.944	67	0.920	67	0.920	64	0.891	64	0.891	62	0.872

Section 12. Projected Visibility Impairment in the MANE-VU Region

Calculation Techniques

For the projections based on the Alpha 2 modeling visibility was calculated using the MATSv2.6.1 visibility tool using the "Revised" IMPROVE calculation for extinction coefficient based on the translations shown in Table 12-1 as had been recommended in EPA guidance during the first planning period (US EPA 2014; Pitchford et al. 2007).

Model Data Input for MATS	Description	Formula with CMAQ v5.02 PM SPECIES
СМ	Coarse PM	ASOIL + ACORS + ASEACAT + ACLK + ASO4K + ANO3K + ANH4K
CRUSTAL	Crustal PM	2.20AALJ + 2.49ASIJ + 1.63ACAJ + 2.42AFEJ + 1.94ATIJ
SO4	Sulfate PM	ASO4I + ASO4J
EC	Elemental Carbon	AECI + AECJ
NO3	Nitrate PM	ANO3I + ANO3J
		AXYL1J + AXYL2J + AXYL3J + ATOL1J + ATOL2J + ATOL3J + ABNZ1J +
00	Organia Mass DM	ABNZ2J + ABNZ3J + AISO1J + AISO2J + AISO3J + ATRP1J + ATRP2J +
	Organic Wass Pivi	ASQTJ + AALKJ + AORGCJ + AOLGBJ + AOLGAJ + APOCI + APOCJ +
		APNCOMI + APNCOMJ

Table 12-1: Model Input for MATS

In the case of the projections based on the Gamma modeling, visibility was calculated using SMAT-CE v.1.2. This tool is EPA's replacement to MATS. At this point SMAT-CE is in Beta, but MATS will not be updated with the "RHR III" IMPROVE calculation algorithms that are necessary to calculate the 20% most impaired days. The translations used in SMAT-CE can be found in Table 12-2.

•		
Model Data Input for SMAT-CE	Description	Formula with CMAQ v5.2.1 PM SPECIES
CRUSTAL	Crustal PM	2.20*AALJ+2.49*ASIJ+1.63*ACAJ+2.42*AFEJ+1.94*ATIJ
NH4	Ammonium	ANH4I+ANH4J
SO4	Sulfate	ASO4I+ASO4J
EC	Elemental carbon	AECI+AECJ
NO3	Nitrate	ANO3I+ANO3J
ос	Organic Mass PM	ALVPO1I+ASVPO1I+ASVPO2I+ALVPO1J+ASVPO1J+ASVPO2J+A SVPO3J+AIVPO1J+ALVOO1I+ALVOO2I+ASVOO1I+ASVOO2I+AX YL1J+AXYL2J+AXYL3J+ATOL1J+ATOL2J+ATOL3J+ABNZ1J+ABNZ 2J+ABNZ3J+AISO1J+AISO2J+AISO3J+ATRP1J+ATRP2J+ASQTJ+A ALK1J+AALK2J+APAH1J+APAH2J+APAH3J+AORGCJ+AOLGBJ+A OLGAJ+ALVOO1J+ALVOO2J+ASVOO1J+ASVOO2J+ASVOO3J+A PCSOJ
PM25	PM2.5	SO4+NO3+NH4+EC+OC+ANAI+ACLI+AOTHRI+ANAJ+ACLJ+AOT HRJ+AFEJ+ASIJ+ATIJ+ACAJ+AMGJ+AMNJ+AALJ+AKJ-CRUSTAL
СМ	Coarse PM	ASOIL+ACORS+ASEACAT+ACLK+ASO4K+ANO3K+ANH4K

Table 12-2: Model Input for SMAT-CE

Results

The next section will review the results from both the Alpha 2 and Gamma 2028 modeling exercises. In many of the tables and charts the abbreviations for each Class I area will be used. The list of Class I area abbreviations is found in Table 12-3.

RPO	ID	State	Class I Area	RPO	ID	State	Class I Area
MANE-VU	ACAD	ME	Acadia National Park	SESARM	MACA	KY	Mammoth Cave National Park
MANE-VU	BRIG	NJ	Edwin B. Forsythe National Wildlife Refuge (Brigantine)	SESARM	OTCR	WV	Otter Creek Wilderness
MANE-VU	GRGU	NH	Great Gulf Wilderness	SESARM	ROMA	SC	Cape Romain National Wildlife Refuge
MANE-VU	LYBR	VT	Lye Brook Wilderness	SESARM	SHEN	VA	Shenandoah National Park
MANE-VU	MOOS	ME	Moosehorn Wilderness	SESARM	SIPS	AL	Sipsey Wilderness
MANE-VU	PRRA	NH	Presidential Range-Dry River Wilderness	SESARM	SWAN	NC	Swanquarter National Wildlife Refuge
MANE-VU	ROCA	ME	Roosevelt-Campobello International Park	LADCO	BOWA	MN	Boundary Waters Wilderness
SESARM	COHU	GA	Cohutta Wilderness	LADCO	ISLE	MI	Isle Royale National Park
SESARM	DOSO	WV	Dolly Sodds Wilderness	LADCO	SENE	MI	Seney National Wildlife Refuge
SESARM	GRSM	TN	Great Smoky Mountains National Park	CENSARA	CACR	AR	Caney Creek Wilderness
SESARM	JARI	VA	James River Face Wilderness	CENSARA	HEGL	MO	Hercules-Glades Wilderness
SESARM	JOYC	TN	Joyce Kilmer-Slickrock Wilderness	CENSARA	MING	MO	Mingo National Wildlife Refuge
SESARM	LIGO	NC	Linville Gorge Wilderness	CENSARA	UPBU	AR	Upper Buffalo Wilderness

Alpha 2 Results

The first step in calculating future projected visibility is to calculate the RRFs for each of the constituent PM species that affect visibility. RRFs were calculated separately for 20% best and 20% worst days (it should be noted that Alpha 2 modeling was completed prior to the requirement to rely on the RHR III metric; Gamma modeling to be discussed later will rely on the new metric). The RRF results can be seen in Figure 12-1. On worst visibility days SO₄ concentrations were projected to decrease and on best visibility days it was projected to decrease less, except at Moosehorn and Roosevelt Campobello, where increases were projected. Concerning NO₃, all sites were projected to stay at roughly the same level in 2028 on worst visibility days, except Lye Brook where decreases were more, and there was much variation on best visibility days, with levels projected to almost double at Acadia. Decreases in Elemental Carbon were projected on both best and worst days and Organic Carbon and Crustal components were projected to stay relatively unchanged. Coarse mass was projected to increase at nearly every site on both best and worst days, with increases of up nearly 650% on best visibility days at Acadia. More detailed RRF results, including all Class I areas in the modeling domain, are in Table 12-4.

Figure 12-1: Relative Response Factor (RRF) of PM Species at each MANE-VU Class I area on 20% best and worst days

Table 12-4: RRFs of visibility-impairing constituent PM species 20% worst and best days at Class I areas in OTC modeling domain for 2028 Alpha 2 base case modeling

			RRF 20% Worst SO ₄ NO ₃ EC OC Cru 0.5936 1.0349 0.6612 0.9715 0.9 0.4968 1.0451 0.6738 1.0361 0.9 0.5265 0.9994 0.6685 0.9838 0.9 0.5314 0.8069 0.6548 0.9902 0.9								RRF 209	% Best		
RPO	ID	State	SO ₄	NO ₃	EC	OC	Crustal	CM	SO ₄	NO ₃	EC	OC	Crustal	CM
MANE-VU	ACAD	ME	0.5936	1.0349	0.6612	0.9715	0.9989	3.2418	0.9588	1.8805	0.7067	1.0189	1.0684	6.4513
MANE-VU	BRIG	NJ	0.4968	1.0451	0.6738	1.0361	0.9395	1.6117	0.7216	0.6886	0.5448	0.8149	0.9137	1.6087
MANE-VU	GRGU	NH	0.5265	0.9994	0.6685	0.9838	0.9159	1.3099	0.8677	0.9556	0.8802	1.1223	1.1088	1.8138
MANE-VU	LYBR	VT	0.5314	0.8069	0.6548	0.9902	0.999	1.1216	0.6799	0.8624	0.7809	1.0025	1.1009	1.2262
MANE-VU	MOOS	ME	0.6891	1.0491	0.7279	1.0147	1.0435	2.0729	1.1247	1.2597	0.8081	0.982	1.1331	4.8745
MANE-VU	PRRA	NH	0.5265	0.9994	0.6685	0.9838	0.9159	1.3099	0.8677	0.9556	0.8802	1.1223	1.1088	1.8138
MANE-VU	ROCA	ME	0.6891	1.0491	0.7279	1.0147	1.0435	2.0729	1.1247	1.2597	0.8081	0.982	1.1331	4.8745
SESARM	DOSO	WV	0.465	1.1132	0.6219	0.88	0.9637	0.996	0.6723	1.128	0.7253	0.9688	1.0167	1.1986
SESARM	GRSM	TN	0.5613	0.9843	0.6001	0.8707	1.0206	0.9911	0.6676	0.5573	0.4773	0.8429	0.8659	0.8533
SESARM	JARI	VA	0.5149	0.7984	0.4364	0.9372	1.011	1.0209	0.6798	0.9832	0.5043	1.0198	0.9924	1.172
SESARM	JOYC	TN	0.5613	0.9843	0.6001	0.8707	1.0206	0.9911	0.6676	0.5573	0.4773	0.8429	0.8659	0.8533
SESARM	LIGO	NC	0.5154	0.5067	0.5689	0.8969	1.0124	1.109	0.6258	0.766	0.5881	0.9116	0.8759	0.8669
SESARM	MACA	КҮ	0.5938	0.9557	0.5364	0.9459	0.9868	0.9699	0.7348	0.7904	0.5883	1.0214	1.0227	1.037
SESARM	OTCR	WV	0.465	1.1132	0.6219	0.88	0.9637	0.996	0.6723	1.128	0.7253	0.9688	1.0167	1.1986
SESARM	ROMA	SC	0.5152	1.2723	0.6107	0.8481	0.9202	3.1282	0.7082	1.1699	0.7113	0.9458	1.0434	4.5063
SESARM	SHEN	VA	0.5055	0.4532	0.5425	0.8864	1.024	1.0491	0.7957	0.6941	0.7234	1.0046	1.1232	1.3039
SESARM	SIPS	AL	0.5791	0.8634	0.7375	0.953	0.9949	1.0546	0.7505	0.8917	0.7234	0.9406	0.973	0.9695
SESARM	SWAN	NC	0.4778	0.3008	0.5913	0.8386	0.9384	1.6576	0.7138	0.6598	0.6571	0.9609	0.9253	1.9612
LADCO	ISLE	MI	0.6098	0.8387	0.7153	1.0102	0.8808	0.8658	1.2009	1.7449	0.9792	1.1827	0.8711	0.856
LADCO	SENE	MI	0.6477	0.8878	0.7976	1.1487	0.9925	1.0275	0.7895	0.9373	0.6625	0.8726	0.7572	0.836
CENSARA	CACR	AR	0.9412	0.998	0.8518	1.0018	1.0904	0.9921	0.9815	1.1709	0.8116	1.0938	1.1017	1.2265
CENSARA	HEGL	MO	0.7723	0.8303	1.0917	1.2895	1.0092	1.0657	1.0538	0.9821	0.8139	1.3097	1.1519	1.1172
CENSARA	UPBU	AR	0.9176	0.8747	0.9825	1.1774	0.9972	0.9928	0.9817	1.0095	0.6637	0.7716	1.0391	0.9785

As you can see in Figure 12-2 visibility is projected to improve at all of the MANE-VU Class I areas on the 20% worst days. The 20% best days at the Class I areas in Maine are projected to see slight degradation in visibility condition by 2028, and the remainder of the Class I areas in MANE-VU are projected to improve on the best 20% days as well. More details on the deciviews results, including all Class I areas in the modeling domain, are in Table 12-5.

Figure 12-2: Projected change in visibility (deciviews) from 2011 to 2028 at MANE-VU Class I areas

			2000-2	2004	201	1	2028 Pro	jection
RPO	ID	State	Worst 20%	Best 20%	Worst 20%	Best 20%	Worst 20%	Best 20%
MANE-VU	ACAD	ME	22.89	8.78	17.93	7.02	16.66	8.9
MANE-VU	BRIG	NJ	29.01	14.33	23.75	12.25	21.5	11.26
MANE-VU	GRGU	NH	22.82	7.66	16.66	5.86	14.11	5.95
MANE-VU	LYBR	VT	24.45	6.37	19.26	4.53	15.69	3.97
MANE-VU	MOOS	ME	21.72	9.16	16.83	6.7	15.61	8.12
MANE-VU	PRRA	NH	22.82	7.66	16.66	5.86	14.11	5.95
MANE-VU	ROCA	ME	21.72	9.16	16.83	6.7	15.61	8.12
SESARM	DOSO	wv	29.05	12.28	22.4	9.03	16.96	7.86
SESARM	GRSM	TN	30.28	13.58	22.5	10.63	18.42	8.51
SESARM	JARI	VA	29.12	14.21	22.55	11.79	18.36	10.33
SESARM	JOYC	TN	30.28	13.58	22.5	10.63	18.42	8.51
SESARM	LIGO	NC	28.77	11.11	21.6	9.7	17.15	7.89
SESARM	MACA	КҮ	31.37	16.51	25.09	13.69	21.54	12.17
SESARM	OTCR	wv	29.05	12.28	22.4	9.03	16.96	7.86
SESARM	ROMA	SC	26.48	14.29	23.17	13.59	20.61	14.48
SESARM	SHEN	VA	29.31	10.93	21.82	8.6	16.71	7.68
SESARM	SIPS	AL	29.03	15.57	22.93	12.84	19.6	11.53
SESARM	SWAN	NC	25.49	12.95	21.77	11.74	17.43	11.2
LADCO	ISLE	MI	20.74	6.77	18.92	5.4	16.64	5.91
LADCO	SENE	MI	24.16	7.14	20.56	5.51	18.67	4.95
CENSARA	CACR	AR	26.36	11.24	22.23	9.74	21.86	10.07
CENSARA	HEGL	MO	26.75	12.84	22.89	10.96	21.98	11.51
CENSARA	UPBU	AR	26.27	11.71	22.12	9.92	21.81	9.48

All seven Class I areas in the MANE-VU region are projected to be below the URP on 20% worst visibility days in 2028 as seen in Figure 12-3, excepting Brigantine which is projected to fall on the URP. From 2011 to 2028 projected visibility improvement in MANE-VU varies between 1.2 deciviews and 3.6 deciviews on the 20% worst visibility days.

On the 20% best visibility days, nearly every site is projected to be at or below the 2000-2004 baseline, excepting Acadia, which is projected to experience a slight uptick.

Figure 12-3: Visibility conditions (deciviews), measured (2000-2004, 2011), modeled (2028), and interpolated (2064), at MANE-VU Class I areas

Gamma Results

As with the Alpha 2 results we began by calculating the relative response factors (RRFs) for each of the constituent PM species that affect visibility. RRFs are species-specific average relative change between base year and future year in modeled species concentration for the observed 20% clearest days and 20% most impaired days based on the IMRPOVE data. The RRF results can be seen in Figure 12-4 and more detailed results, including all Class I areas in the modeling domain, for the base case are in Table 12-6 and the control case in Table 12-7.

On the 20% most impaired visibility days SO_4 concentrations were projected to decrease (RRF=0.5~0.6 for MANEVU Class I areas) and on the 20% clearest visibility days SO_4 concentrations were projected to decrease less (RRF=0.6~0.9 for MANEVU Class I areas). The control case modeling showed slightly more improvement (up to 0.02 lower in RRF) in SO_4 concentrations on both the most impaired and the clearest days. Concerning NO_3 , nearly all sites were projected to decrease, with smaller decreases on the most impaired days, with the exception at Moosehorn and Roosevelt-Campobello which saw slight increases in NO_3 on the clearest days. Like with SO_4 , small improvements in NO_3 concentrations occurred in the control case. Decreases near 50% in Elemental Carbon were projected on both clearest and most impaired days. Decreases were also projected for Organic Carbon on both clearest and most impaired days, but at a lower magnitude than Elemental Carbon. Crustal components and coarse mass were projected to stay relatively unchanged.

Figure 12-4: Relative Response Factor (RRF) of PM Species at each MANE-VU Class I area and nearby sites on 20% clearest and most impaired days for base and control case modeling

Table 12-6: RRFs of visibility-impairing constituent PM species 20% most impaired and 20% clearest days at Class I areas in OTC modeling domain for 2028 Gamma base case modeling

				R	RF 20% N	/lost Impa	aired				RRF 20	% Cleares	st	
RPO	ID	State	SO ₄	NO ₃	EC	OC	Crustal	CM	SO_4	NO ₃	EC	OC	Crustal	CM
MANE-VU	ACAD	ME	0.52	0.97	0.59	0.88	1.00	0.98	0.81	0.95	0.59	0.79	1.03	1.00
MANE-VU	BRIG	NJ	0.49	0.85	0.61	0.85	0.91	0.96	0.65	0.65	0.54	0.95	0.95	0.98
MANE-VU	GRGU	NH	0.53	0.86	0.63	0.88	0.98	0.99	0.76	0.75	0.68	0.88	1.00	0.98
MANE-VU	LYBR	VT	0.49	0.79	0.60	0.85	0.98	0.98	0.61	0.72	0.62	0.86	0.99	0.98
MANE-VU	MOOS	ME	0.62	0.93	0.63	0.91	0.99	0.95	0.93	1.07	0.67	0.94	1.03	1.00
MANE-VU	PRRA	NH	0.53	0.86	0.63	0.88	0.98	0.99	0.76	0.75	0.68	0.88	1.00	0.98
MANE-VU	ROCA	ME	0.62	0.93	0.63	0.91	0.99	0.95	0.93	1.07	0.67	0.94	1.03	1.00
SESARM	сони	GA	0.41	0.49	0.50	0.66	1.03	1.11	0.62	0.58	0.57	0.91	1.05	1.06
SESARM	DOSO	wv	0.44	1.04	0.58	0.64	0.95	1.02	0.64	0.76	0.69	0.95	0.92	0.98
SESARM	GRSM	TN	0.41	0.86	0.54	0.62	1.03	1.07	0.62	0.62	0.52	0.94	1.05	1.10
SESARM	JARI	VA	0.45	0.90	0.42	0.65	0.97	0.99	0.59	0.72	0.52	0.88	0.96	1.02
SESARM	JOYC	TN	0.41	0.86	0.54	0.62	1.03	1.07	0.62	0.62	0.52	0.94	1.05	1.10
SESARM	LIGO	NC	0.42	0.74	0.53	0.67	0.99	1.02	0.61	0.69	0.58	0.94	1.03	1.07
SESARM	MACA	КҮ	0.56	0.76	0.46	0.79	0.95	1.09	0.63	0.70	0.49	0.94	1.00	1.08
SESARM	OTCR	wv	0.44	1.04	0.58	0.64	0.95	1.02	0.64	0.76	0.69	0.95	0.92	0.98
SESARM	ROMA	SC	0.44	0.90	0.52	0.78	0.98	1.01	0.66	0.93	0.65	0.90	1.04	1.00
SESARM	SHEN	VA	0.45	0.53	0.50	0.65	0.97	1.03	0.69	0.60	0.64	0.97	0.96	1.00
SESARM	SIPS	AL	0.54	0.67	0.57	0.77	1.04	1.07	0.73	0.80	0.74	0.95	1.08	1.06
SESARM	SWAN	NC	0.46	0.90	0.57	0.79	0.96	0.97	0.74	0.76	0.62	0.93	1.01	0.99
LADCO	BOWA	MN	0.72	0.78	0.73	0.91	0.99	1.00	0.86	0.98	0.88	0.92	0.96	0.96
LADCO	ISLE	MI	0.62	0.81	0.62	0.89	1.01	1.03	0.87	0.95	0.76	0.87	1.00	1.00
LADCO	SENE	MI	0.57	0.77	0.60	0.88	1.00	1.02	0.90	0.83	0.73	0.85	0.97	1.02
CENSARA	CACR	AR	0.83	0.87	0.64	0.84	1.06	1.16	0.99	0.99	0.71	0.93	1.13	1.20
CENSARA	HEGL	MO	0.78	0.84	0.74	0.89	1.12	1.23	0.79	1.03	0.58	0.85	1.14	1.22
CENSARA	MING	мо	0.80	0.73	0.60	0.91	1.05	1.14	0.83	0.73	0.49	0.91	1.06	1.14
CENSARA	UPBU	AR	0.76	0.86	0.73	0.88	1.08	1.19	0.89	1.01	0.80	0.93	1.10	1.19

				F	RRF 20% M	Vlost Impa	aired				RRF 20	% Cleare	st	
RPO	ID	State	SO ₄	NO ₃	EC	OC	Crustal	CM	SO ₄	NO ₃	EC	OC	Crustal	CM
MANE-VU	ACAD	ME	0.50	0.97	0.59	0.88	1.00	0.98	0.81	0.95	0.59	0.79	1.03	1.00
MANE-VU	BRIG	NJ	0.47	0.84	0.61	0.86	0.91	0.96	0.62	0.65	0.54	0.95	0.95	0.98
MANE-VU	GRGU	NH	0.51	0.85	0.63	0.88	0.98	0.99	0.74	0.75	0.68	0.88	1.00	0.98
MANE-VU	LYBR	VT	0.47	0.78	0.60	0.85	0.98	0.98	0.59	0.72	0.62	0.86	0.99	0.98
MANE-VU	MOOS	ME	0.61	0.91	0.63	0.92	0.99	0.94	0.93	1.07	0.67	0.94	1.03	1.00
MANE-VU	PRRA	NH	0.51	0.85	0.63	0.88	0.98	0.99	0.74	0.75	0.68	0.88	1.00	0.98
MANE-VU	ROCA	ME	0.61	0.91	0.63	0.92	0.99	0.94	0.93	1.07	0.67	0.94	1.03	1.00
SESARM	сони	GA	0.39	0.47	0.50	0.65	1.03	1.11	0.61	0.56	0.57	0.91	1.05	1.06
SESARM	DOSO	wv	0.43	1.04	0.58	0.64	0.95	1.02	0.63	0.73	0.69	0.96	0.92	0.98
SESARM	GRSM	TN	0.39	0.85	0.54	0.62	1.03	1.07	0.62	0.61	0.52	0.94	1.05	1.10
SESARM	JARI	VA	0.43	0.89	0.42	0.64	0.97	0.99	0.58	0.69	0.52	0.88	0.96	1.02
SESARM	JOYC	TN	0.39	0.85	0.54	0.62	1.03	1.07	0.62	0.61	0.52	0.94	1.05	1.10
SESARM	LIGO	NC	0.40	0.74	0.53	0.66	0.99	1.02	0.59	0.67	0.58	0.94	1.03	1.07
SESARM	MACA	КҮ	0.53	0.74	0.46	0.78	0.95	1.09	0.62	0.69	0.49	0.94	1.00	1.08
SESARM	OTCR	wv	0.43	1.04	0.58	0.64	0.95	1.02	0.63	0.73	0.69	0.96	0.92	0.98
SESARM	ROMA	SC	0.43	0.88	0.52	0.78	0.98	1.01	0.65	0.91	0.65	0.90	1.04	1.00
SESARM	SHEN	VA	0.43	0.51	0.50	0.64	0.97	1.03	0.65	0.57	0.64	0.97	0.96	1.00
SESARM	SIPS	AL	0.53	0.65	0.57	0.77	1.04	1.07	0.72	0.79	0.74	0.95	1.08	1.06
SESARM	SWAN	NC	0.44	0.88	0.57	0.79	0.96	0.97	0.71	0.76	0.62	0.93	1.01	0.99
LADCO	BOWA	MN	0.72	0.78	0.73	0.90	0.99	1.00	0.86	0.98	0.88	0.92	0.96	0.96
LADCO	ISLE	MI	0.61	0.81	0.62	0.89	1.01	1.03	0.87	0.96	0.76	0.87	1.00	1.00
LADCO	SENE	MI	0.56	0.76	0.60	0.88	1.00	1.02	0.90	0.83	0.73	0.85	0.97	1.02
CENSARA	CACR	AR	0.82	0.86	0.64	0.84	1.06	1.16	0.99	0.99	0.71	0.93	1.13	1.20
CENSARA	HEGL	MO	0.78	0.83	0.74	0.89	1.12	1.23	0.79	1.03	0.58	0.85	1.14	1.22
CENSARA	MING	мо	0.80	0.70	0.60	0.91	1.05	1.14	0.83	0.72	0.49	0.91	1.06	1.14
CENSARA	UPBU	AR	0.76	0.86	0.73	0.87	1.08	1.19	0.89	1.01	0.80	0.92	1.10	1.19

Table 12-7: RRFs of visibility-impairing constituent PM species 20% most impaired and clearest days at Class I areas in OTC modeling domain for 2028 Gamma control case modeling

As you can see in Figure 12-5 visibility is projected to improve at all of the MANE-VU Class I areas on the 20% most impaired days. Even greater improvements are projected for the Class I areas nearby to MANE-VU in Virginia and West Virginia. The 20% clearest days at the Class I areas both inside and outside of MANE-VU are projected to improve as well, although not to the same extent as on the 20% most impaired days. The control case results in slight improvements in visibility beyond those in the base case, on both clearest and most impaired days, except during the clearest days at the Class I areas in Maine. More detailed results, including all Class I areas in the modeling domain, can be found in Table 12-8.

Figure 12-6 illustrates how the modeled 2011 and 2028 results compare to the uniform rate of progress (URP) on most impaired days, no degradation on clearest days, and the rolling 5-year average for both most impaired and clearest days. All sites in MANE-VU are modeled to be (3~6 deciviews) below the URP in 2028 for both the base and control cases. These results all show improvements in visibility occurring between the most recent 5-year most impaired day rolling average and 2028. Improvements are modeled for the best days in 2028 from the most recent 5-year best day rolling averages and all sites are projected to be well below the level that constitutes no degradation from the clearest days from 2000-2004.

Figure 12-5: Projected change in visibility (deciviews) from 2011 to 2028 at MANE-VU Class I area and nearby sites on 20% clearest and most impaired days for base and control case modeling

Table 12-8: 2011 monitored, 2028 base case, and 2028 control case modeled visibility impairment (deciviews) on 20% most impaired (MI
and clearest days at Class I areas in OTC modeling domain

			:	2011	2028 Bas	e Projection	2028 Con	trol Projection
RPO	ID	State	MI 20%	Best 20%	MI 20%	Best 20%	MI 20%	Best 20%
MANE-VU	ACAD	ME	16.84	7.02	13.44	6.33	13.35	6.33
MANE-VU	BRIG	NJ	22.26	12.25	18.16	10.55	17.97	10.47
MANE-VU	GRGU	NH	15.43	5.87	12.13	5.11	12	5.06
MANE-VU	LYBR	VT	18.06	4.89	13.89	3.9	13.68	3.86
MANE-VU	MOOS	ME	15.8	6.71	13.2	6.46	13.12	6.45
MANE-VU	PRRA	NH	15.43	5.87	12.13	5.11	12	5.06
MANE-VU	ROCA	ME	15.8	6.71	13.2	6.46	13.12	6.45
SESARM	COHU	GA	21.19	10.94	14.66	8.82	14.39	8.74
SESARM	DOSO	wv	21.59	9.03	15.3	7.33	15.09	7.27
SESARM	GRSM	TN	21.39	10.63	15	8.7	14.77	8.65
SESARM	JARI	VA	21.37	11.79	15.48	9.45	15.31	9.36
SESARM	JOYC	TN	21.39	10.63	15	8.7	14.77	8.65
SESARM	LIGO	NC	20.39	9.7	14.25	7.92	13.99	7.82
SESARM	MACA	KY	24.04	13.69	19.56	11.39	19.24	11.32
SESARM	OTCR	WV	21.59	9.03	15.3	7.33	15.09	7.27
SESARM	ROMA	SC	21.48	13.59	16.28	11.96	16.15	11.9
SESARM	SHEN	VA	20.72	8.6	14.54	7	14.25	6.83
SESARM	SIPS	AL	21.67	12.84	17.11	11.43	16.87	11.39
SESARM	SWAN	NC	19.76	11.76	15.1	10.55	14.86	10.45
LADCO	BOWA	MN	16.43	4.86	14.41	4.51	14.37	4.51
LADCO	ISLE	MI	17.63	5.4	15.04	5.06	14.98	5.06
LADCO	SENE	MI	19.84	5.51	16.56	5.19	16.46	5.18
CENSARA	CACR	AR	20.87	9.74	19.3	9.69	19.26	9.69
CENSARA	HEGL	мо	21.63	10.96	19.84	10.19	19.82	10.19
CENSARA	MING	мо	22.7	12.47	20.56	11.44	20.49	11.42
CENSARA	UPBU	AR	20.52	9.95	18.69	9.69	18.65	9.69

Figure 12-6: Modeled 2011 base case, 2028 base case, and 2028 control case compared to no degradation on best days, URP on most impaired days, and 5-year rolling haze indices

References

Pitchford, M, Malm, W, Schichtel, B, Kumar, N, Lowenthal, D and Hand, J 2007, 'Revised Algorithm for Estimating Light Extinction from IMPROVE Particle Speciation Data', *Journal of the Air & Waste Management Association*, vol. 57, no. 11, pp. 1326–1336.

US EPA 2014, 'Draft Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM_{2.5}, and Regional Haze', accessed from <https://www3.epa.gov/ttn/scram/guidance/guide/Draft_O3-PM-RH_Modeling_Guidance-2014.pdf>.

Section 13. Source Apportionment Modeling Results in the Ozone Transport Region

Overview

States are required under section 110(a)(2)(D) of the Clean Air Act to submit SIP revisions that prohibit air pollution from their state from contributing to nonattainment or interfering with maintenance of the NAAQS in a downwind state (*Clean Air Act Amendments of 1990* 1990). These SIPs, called Good Neighbor SIPs, are due three years after a NAAQS is updated, which for the 70ppb 2015 Ozone NAAQS is October 1, 2018, prior to the earliest designated attainment date for that standard.

For the 2008 Ozone NAAQS, multiple states failed to submit timely or approvable Good Neighbor SIPs. This prompted EPA to adopt the CSAPR Update rule as a FIP (US EPA 2016). EPA cautioned that the CSAPR Update was only a "partial remedy," meaning there are still unfilled Good Neighbor obligations from upwind states beyond meeting the requirements of the CSAPR Update.

For the CSAPR Update, EPA conducted contribution assessment modeling for the year 2017, which is the year that moderate nonattainment areas are required to attain the 2008 ozone standard of 75 ppb. In addition, EPA recently conducted preliminary contribution assessment modeling for the year 2023, which is the year that any area designated as a moderate nonattainment area for the 2015 ozone NAAQS would be required to attain the 70 ppb standard.

OTC has expressed several concerns with EPA's 2023 contribution assessment approach. Flaws identified by OTC include the use of the IPM model to project future emissions from electricity generating units instead of using the ERTAC EGU model, the use of anticipated future year emissions instead of current emissions, and the use of average ozone season contributions instead of contributions on peak days (US EPA 2017).

OTC is working to provide OTC states with this alternative assessment of 2023 modeling so that the states can consider the technical deficiencies of EPA's approach prior to the October 2018 deadline for submitting Good Neighbor SIPs for the 70 ppb ozone standard.

Tagging Methodology

The modeling runs were tagged in a fashion to allow comparisons to be made at both the state and sector level. It is acknowledged that a sector in a state that is further away might have a completely minimal contribution, but having the ability to aggregate sectors to develop different views was important.

All states in the modeling domain were tagged separately, including states that are only partially in the modeling domain. For most sectors this resulted in 32 tags per sector, but RWC and fires were only tagged by state in the OTR with the other states being combined into one geography making 14 tags for each of these two sectors. Sectors will not be separated out for Canadian emissions or emissions that occur in waters outside of state boundaries.

Concerning sectors to be tagged we tagged EGUs, Nonroad, area, point oil and gas, area oil and gas, marine vessels, RWC, and fires separately. We also subdivided non-EGU point into cement kilns, municipal waste treatment, and other point sources and onroad into diesel and other onroad sources

separately based on the SCCs shown in Table 13-1. These sub-sectors were selected based on inventory analyses conducted by the Good Neighbor SIP Workgroup. Natural gas compressors were originally to be separated out as well until it was determined that the point oil and gas sector contained that sub-sector and very few other sources.

Sector	Truncated SCC
Diesel Vehicles	2202*
Natural Gas Compressors	202002*
Cement Kilns	305006*
Municipal Waste	501001*, 502001*, and
Treatment	503005*

Table 13-1: SCC Pattern for Tagging Sub Sectors (with * indicating truncated SCC)

Biogenics are tagged separately as well, but not tagged by state. All other emissions not previously mentioned are included in another category that is not separated by state as well. Initial and Boundary Conditions are also each tagged separately.

CAMx cannot computationally handle all of these tags (385 in all). As a result, three separate CAMx runs were completed where the sectors that are being tagged separately by state are being merged geographically with only several of the sectors remaining tagged by state. As an example in one run EGUs, marine vessels, non-point sources, and Nonroad sources were tagged by state and the other sectors are being merged into one tag. This limited the number of tags to a number that CAMx can process, though three runs were needed in order to process all of the tags. The complete list of tags can be seen in Table 13-2 with the tags separated out by state in Run 1 being colored blue, Run 2 green, and Run 3 purple. Tag 130 was used in runs 1 and 2 to tag any state/sector that was not specifically tagged and in run 3 Tag 124 was. An additional Run 4 was completed, though not listed, where EPA's EGU and nonptipm files were substituted for those in the OTC modeling platform.

State	Bio-	Non-	Non-	Onroad	ł	Non-EGL	J Point		EGU	Oil & Ga	IS	CMV	RWC	Other
	genic	point	road	Diesel	Non-Diesel	Cement	MWC	Other	ERTAC	Point	Non Point	C1C2C3		
СТ	1	R1: 2	R1: 34	R2: 2	R2: 34	R3: 2	R3: 34	R3: 66	R1: 66	R2: 66	R2: 98	R1: 98	R3: 100	Wildfire
DE		R1: 3	R1: 35	R2: 3	R2: 35	R3: 3	R3: 35	R3: 67	R1: 67	R2: 67	R2: 99	R1: 99	R3: 101	R3: 118
DC		R1: 4	R1: 36	R2: 4	R2: 36	R3: 4	R3: 36	R3: 68	R1: 68	R2: 68	R2: 100	R1: 100	R3: 102	
ME		R1: 5	R1: 37	R2: 5	R2: 37	R3: 5	R3: 37	R3: 69	R1: 69	R2: 69	R2: 101	R1: 101	R3: 103	Rail
MD		R1: 6	R1: 38	R2: 6	R2: 38	R3: 6	R3: 38	R3: 70	R1: 70	R2: 70	R2: 102	R1: 102	R3: 104	R3: 119
MA		R1: 7	R1: 39	R2: 7	R2: 39	R3: 7	R3: 39	R3: 71	R1: 71	R2: 71	R2: 103	R1: 103	R3: 105	Droccribod
NH		R1: 8	R1: 40	R2: 8	R2: 40	R3: 8	R3: 40	R3: 72	R1: 72	R2: 72	R2: 104	R1: 104	R3: 106	Fire
NJ		R1: 9	R1: 41	R2: 9	R2: 41	R3: 9	R3: 41	R3: 73	R1: 73	R2: 73	R2: 105	R1: 105	R3: 107	R3:120
NY		R1: 10	R1: 42	R2: 10	R2: 42	R3: 10	R3: 42	R3: 74	R1: 74	R2: 74	R2: 106	R1: 106	R3: 108	
PA		R1: 11	R1: 43	R2: 11	R2: 43	R3: 11	R3: 43	R3: 75	R1: 75	R2: 75	R2: 107	R1: 107	R3: 109	Ag
RI		R1: 12	R1: 44	R2: 12	R2: 44	R3: 12	R3: 44	R3: 76	R1: 76	R2: 76	R2: 108	R1: 108	R3: 110	R3: 121
VT		R1: 13	R1: 45	R2: 13	R2: 45	R3: 13	R3: 45	R3: 77	R1: 77	R2: 77	R2: 109	R1: 109	R3: 111	
VA		R1: 14	R1: 46	R2: 14	R2: 46	R3: 14	R3: 46	R3: 78	R1: 78	R2: 78	R2: 110	R1: 110	R3: 112	Ag Fire
IL		R1: 15	R1: 47	R2: 15	R2: 47	R3: 15	R3: 47	R3: 79	R1: 79	R2: 79	R2: 111	R1: 111	R3: 114	R3:122
IN		R1: 16	R1: 48	R2: 16	R2: 48	R3: 16	R3: 48	R3: 80	R1: 80	R2: 80	R2: 112	R1: 112		
MI		R1: 17	R1: 49	R2: 17	R2: 49	R3: 17	R3: 49	R3: 81	R1: 81	R2: 81	R2: 113	R1: 113		Afdust
ОН		R1: 18	R1: 50	R2: 18	R2: 50	R3: 18	R3: 50	R3: 82	R1: 82	R2: 82	R2: 114	R1: 114		R3: 123
WI		R1: 19	R1: 51	R2: 19	R2: 51	R3: 19	R3: 51	R3: 83	R1: 83	R2: 83	R2: 115	R1: 115		
AL		R1: 20	R1: 52	R2: 20	R2: 52	R3: 20	R3: 52	R3: 84	R1: 84	R2: 84	R2: 116	R1: 116	R3: 115	Ocean Cl2
GA		R1: 21	R1: 53	R2: 21	R2: 53	R3: 21	R3: 53	R3: 85	R1: 85	R2: 85	R2: 117	R1: 117		K3: 125
КҮ		R1: 22	R1: 54	R2: 22	R2: 54	R3: 22	R3: 54	R3: 86	R1: 86	R2: 86	R2: 118	R1: 118		

Table 13-2: Tagging Methodology

State	Bio-	Non-	Non-	Onroad	1	Non-EGL	J Point		EGU	Oil & Ga	IS	CMV	RWC	Other
	genic	point	road	Diesel	Non-Diesel	Cement	MWC	Other	ERTAC	Point	Non	C1C2C3		
											Point			
MS		R1: 23	R1: 55	R2: 23	R2: 55	R3: 23	R3: 55	R3: 87	R1: 87	R2: 87	R2: 119	R1: 119		
NC		R1: 24	R1: 56	R2: 24	R2: 56	R3: 24	R3: 56	R3: 88	R1: 88	R2: 88	R2: 120	R1: 120		
SC		R1: 25	R1: 57	R2: 25	R2: 57	R3: 25	R3: 57	R3: 89	R1: 89	R2: 89	R2: 121	R1: 121		
TN		R1: 26	R1: 58	R2: 26	R2: 58	R3: 26	R3: 58	R3: 90	R1: 90	R2: 90	R2: 122	R1: 122		
WV		R1: 27	R1: 59	R2: 27	R2: 59	R3: 27	R3: 59	R3: 91	R1: 91	R2: 91	R2: 123	R1: 123	R3: 113	
AR		R1: 28	R1: 60	R2: 28	R2: 60	R3: 28	R3: 60	R3: 92	R1: 92	R2: 92	R2: 124	R1: 124	R3: 116	
IA		R1: 29	R1: 61	R2: 29	R2: 61	R3: 29	R3: 61	R3: 93	R1: 93	R2: 93	R2: 125	R1: 125		
LA		R1: 30	R1: 62	R2: 30	R2: 62	R3: 30	R3: 62	R3: 94	R1: 94	R2: 94	R2: 126	R1: 126		
MN		R1: 31	R1: 63	R2: 31	R2: 63	R3: 31	R3: 63	R3: 95	R1: 95	R2: 95	R2: 127	R1: 127	R3: 114	
мо		R1: 32	R1: 64	R2: 32	R2: 64	R3: 32	R3: 64	R3: 96	R1: 96	R2: 96	R2: 128	R1: 128	R3: 116	
ТΧ		R1: 33	R1: 65	R2: 33	R2: 65	R3: 33	R3: 65	R3: 97	R1: 97	R2: 97	R2: 129	R1: 129		
Offshore						R3: 98						R3: 99		
Can.		R3: 117	7											
IC	R1 & F	R2: 131,	R3: 126											
BC	R1 & F	R2: 132,	R3: 127											

Ozone Results

2023 Design Value Results

To begin, we analyzed the projected 2023 design values that were modeled using CAMx. By 2023 all monitors in the domain are projected to attain the 75 ppb NAAQS as seen in Figure 13-1, although four monitors are projected to remain in nonattainment for the 70 ppb NAAQS in 2023, all in the OTR. When changing the calculation method to remove over water grid cells an additional monitor is projected to attain the 70 ppb NAAQS by 2023 as seen in Figure 13-2. A state level summary of the 2023 results can be found in Table 13-3 and a monitor level summary in Table 13-4.

Table 13-3: State summary (maximum DVF, monitors violating 75 ppb, monitors violating 70 ppb) of base case modeling for 2023 Gamma platforms calculated using the "EPA Guidance" and "Less Water" techniques.

			OTR						N	on-OTR			
	EPA Guidance Less Water tate Max >75 >70 Max >75 >							Non-OTR EPA Guidance Less Watu Max >75 >70 Max >75 58 0 0 58 0 60 0 0 60 0 59 0 0 55 0 63 0 0 68 0 65 0 0 67 0 67 0 0 64 0 69 0 0 69 0 56 0 0 56 0 56 0 0 56 0 56 0 0 56 0					r
State	Max	>75	>70	Max	>75	>70	State	Max	>75	>70	Max	>75	>70
СТ	71	0	1	69	0	0	AL	58	0	0	58	0	0
DC	61	0	0	61	0	0	AR	60	0	0	60	0	0
DE	61	0	0	60	0	0	GA	59	0	0	59	0	0
MA	63	0	0	63	0	0	IA	55	0	0	55	0	0
MD	71	0	1	71	0	1	IL	63	0	0	68	0	0
ME	59	0	0	60	0	0	IN	65	0	0	67	0	0
NH	56	0	0	56	0	0	KY	67	0	0	67	0	0
NJ	67	0	0	67	0	0	LA	64	0	0	64	0	0
NY	72	0	2	73	0	1	MI	69	0	0	69	0	0
PA	67	0	0	67	0	0	MN	56	0	0	56	0	0
RI	62	0	0	61	0	0	MO	64	0	0	64	0	0
VA	64	0	0	64	0	0	MS	60	0	0	60	0	0
VT	51	0	0	51	0	0	NC	62	0	0	62	0	0
							OH	65	0	0	65	0	0
							SC	55	0	0	55	0	0
							TN	60	0	0	60	0	0
							ТΧ	-8	0	0	-8	0	0
				VA	59	0	0	59	0	0			
						WI	70	0	0	71	0	1	
							WV	59	0	0	59	0	0

Table 13-4: Monitor summary for monitors in the OTR only of base case modeling for 2023 Gamma platforms calculated using the "EPA Guidance" and "Less Water" techniques (DVF > 75 ppb highlighted in red, DVF > 70 ppb highlighted in green).

			EPA Gu	uidance	Less \	Water				EPA G	uidance	Less V	Vater
State	AQS Code	DVC	DVF	RRF	DVF	RRF	State	AQS Code	DVC	DVF	RRF	DVF	RRF
СТ	90010017	80.3	69	0.867	68	0.852	NY	360010012	68	55	0.820	55	0.820
	90011123	81.3	66	0.817	66	0.817		360050133	74	67	0.918	62	0.846
	90013007	84.3	70	0.839	69	0.826		360130006	73.3	59	0.807	59	0.811
	90019003	83.7	71	0.860	69	0.826		360130011	74	59	0.809	59	0.799
	90031003	73.7	58	0.793	58	0.793		360150003	66.5	55	0.829	55	0.829
	90050005	70.3	55	0.796	55	0.796		360270007	72	57	0.797	57	0.797
	90070007	79.3	63	0.797	63	0.797		360290002	71.3	58	0.822	58	0.823
	90090027	74.3	61	0.828	60	0.814		360310002	70.3	48	1.637	48	1.638

			EPA G	uidance	Less \	Water				EPA G	uidance	Less \	Vater
State	AQS Code	DVC	DVF	RRF	DVF	RRF	State	AQS Code	DVC	DVF	RRF	DVF	RRF
	90099002	85.7	69	0.817	68	0.802		360310003	67.3	55	0.819	55	0.819
	90110124	80.3	65	0.813	66	0.828	İ	360337003	45	37	0.831	37	0.826
	90131001	75.3	59	0.797	59	0.797		360410005	66	53	0.815	53	0.812
CT Max			71	0.867	69	0.852		360430005	62	50	0.820	50	0.822
DC	110010041	76	58	0 767	58	0.767		360450002	71 7	59	0.827	59	0.831
20	110010043	80.7	61	0.767	61	0.767		360530006	67	54	0.820	54	0.820
DC Max	110010045	00.7	61	0.767	61	0.767		360610135	73.3	66	0.020	62	0.854
DE	100010002	74.2	57	0.776	57	0.776		260621006	73.5	60	0.300	50	0.034
DL	100010002	74.3	57	0.770	57	0.770		300031000	72.3 61 E	50 50	0.837	59	0.017
	100031007	70.5	50	0.705	50	0.705		360671015	60.2	50	0.020	50	0.820
	100031010	70	00	0.762	00	0.762		300071013	09.5	57	0.000	57	0.000
	100031013	//./	60 50	0.777	60	0.777		360715001	67	53	0.803	53	0.803
	100032004	75	58	0.777	58	0.777		360750003	68	55	0.818	55	0.822
	100051002	77.3	59	0.771	59	0.773		360790005	70	56	0.813	56	0.813
	100051003	77.7	61	0.787	60	0.780		360810124	78	69	0.891	69	0.889
DE Max			61	0.787	60	0.782		360830004	67	54	0.817	54	0.817
MA	250010002	73	58	0.803	59	0.818		360850067	81.3	71	0.876	65	0.808
	250034002	69	56	0.816	56	0.816		360870005	75	61	0.821	61	0.821
	250051002	74	60	0.816	60	0.822		360910004	67	54	0.816	54	0.816
	250070001	77	63	0.829	63	0.821		361010003	65.3	54	0.833	54	0.833
	250092006	71	56	0.801	57	0.814		361030002	83.3	72	0.865	73	0.880
	250094005	70	56	0.810	56	0.808		361030004	78	65	0.842	64	0.824
	250095005	69.3	56	0.810	56	0.810		361030009	78.7	58	1.723	57	1.693
	250130008	73.7	58	0.790	58	0.790		361111005	69	56	0.816	56	0.815
	250150103	64.7	51	0.795	51	0.795		361173001	65	53	0.826	53	0.825
	250154002	71.3	56	0.786	56	0.786		361192004	75.3	68	0.905	62	0.834
	250170009	67.3	53	0.799	53	0.799	NY Max			72	0.918	73	0.889
	250171102	67	52	0.790	52	0.790	PA	420030008	76.3	63	0.838	63	0.838
	250213003	72.3	58	0.814	57	0.799	Ì	420030010	73.7	61	0.838	61	0.838
	250250041	68.3	55	0.810	54	0.804		420030067	75.7	61	0.812	61	0.812
	250250042	60.7	49	0.814	48	0.802		420050001	74.3	60	0.814	60	0.814
	250270015	68.3	54	0.792	54	0.792		420070002	70.7	58	0.823	58	0.823
	250270024	69	54	0.787	54	0.787		420070005	74.7	62	0.835	62	0.835
MA Max			63	0.829	63	0.822		420070014	72.3	60	0.840	60	0.840
MD	240030014	83	63	0.766	63	0.766		420110006	71.7	56	0.783	56	0.783
	240051007	79	64	0.813	64	0.813		420110011	76.3	58	0.771	58	0.771
	240053001	80.7	64	0.801	64	0.801		420130801	72.7	59	0.819	59	0.819
	240090011	79.7	63	0.792	62	0.779		420170012	80.3	63	0.796	63	0.796
	240030011	76.3	50	0.752	50	0.773		420210012	70.3	57	0.750	57	0.750
	240150001	90.5	64	0.773	64	0.773		420270100	70.5	59	0.010	59	0.010
	240130003	79	61	0.775	61	0.775		420270100	72	50	0.820	50	0.820
	240170010	75	60	0.775	59	0.773		420279991	76.2	59	0.822	59	0.822
	240199991	75	50	0.800	50	0.778		420230100	70.3	50	0.770	50	0.770
	240210037	70.5	59	0.760	59	0.760		420554000	72.5	50	0.034	50 F 4	0.054
	240230002	/2	71	0.766	71	0.700		420430401	74 7	54	0.790	54	0.790
	240251001	90	/1	0.798	/1	0.798		420431100	74.7	5/	0.775	5/	0.775
	240259001	79.3	62	0.783	62	0.788		420450002	/5./	59	0.787	59	0.787
	240290002	78.7	60	0.775	60	0.775		420490003	/4	58	0.797	59	0.799
	240313001	/5./	59	0.784	59	0.784		420550001	6/	53	0.795	53	0.795
	240330030	/9	60	0.769	60	0.769		420590002	69	55	0.809	55	0.809
	240338003	82.3	63	0.767	63	0.767		420630004	75.7	61	0.819	61	0.819
	240339991	80	61	0.768	61	0.768		420690101	71	55	0.788	55	0.788
	240430009	72.7	56	0.781	56	0.781		420692006	68.7	54	0.788	54	0.788
	245100054	73.7	60	0.818	59	0.812		420710007	77	59	0.774	59	0.774
MD Max			71	0.818	71	0.813		420710012	78	59	0.768	59	0.768
ME	230010014	61	48	0.803	49	0.804		420730015	71	57	0.807	57	0.807
	230031100	51.3	-8	-9	-8	-9		420750100	76	58	0.773	58	0.773
	230052003	69.3	56	0.810	56	0.817		420770004	76	59	0.784	59	0.784
	230090102	71.7	59	0.835	60	0.840		420791100	65	49	0.767	49	0.767
	230090103	66.3	54	0.818	55	0.838		420791101	64.3	49	0.777	49	0.777
	230112005	62.7	49	0.796	49	0.796		420810100	67	53	0.803	53	0.803
	230130004	67.7	54	0.804	54	0.810		420850100	76.3	58	0.773	58	0.773
	230173001	54.3	44	0.812	44	0.812		420890002	66.7	51	0.773	51	0.773

			EPA Gu	uidance	Less	Water				EPA G	uidance	Less \	Vater
State	AQS Code	DVC	DVF	RRF	DVF	RRF	State	AQS Code	DVC	DVF	RRF	DVF	RRF
	230194008	57.7	-8	-9	-8	-9		420910013	76.3	59	0.783	59	0.783
	230230006	61	48	0.795	48	0.800		420950025	76	58	0.782	58	0.782
	230290019	58.3	49	0.854	49	0.851		420958000	69.7	54	0.783	54	0.783
	230290032	53	-8	-9	-8	-9		420990301	68.3	54	0.801	54	0.801
	230310038	60.3	47	0.793	47	0.793		421010004	66	53	0.806	53	0.806
	230310040	64.3	51	0.796	51	0.796		421010024	83.3	67	0.807	67	0.807
	230312002	73.7	59	0.804	59	0.803		421011002	80	64	0.807	64	0.807
ME Max			59	0.854	60	0.851		421119991	65	51	0.797	51	0.797
NH	330012004	62.3	50	0.809	50	0.803		421174000	69.7	57	0.832	57	0.832
	330050007	62.3	49	0.794	49	0.794		421250005	70	57	0.822	57	0.822
	330074001	69.3	56	0.820	56	0.820		421250200	70.7	57	0.816	57	0.816
	330074002	59.7	49	0.821	49	0.821		421255001	70.3	57	0.819	57	0.819
	330090010	59.7	48	0.811	48	0.811		421290006	71.7	59	0.831	59	0.831
	330111011	66.3	52	0.798	52	0.798		421290008	71	58	0.819	58	0.819
	330115001	69	54	0.796	54	0.796		421330008	72.3	55	0.772	55	0.772
	330131007	64.7	51	0.793	51	0.793		421330011	74.3	57	0.774	57	0.774
	330150014	66	53	0.807	53	0.808	PA Max			67	0.840	67	0.840
	330150016	66.3	53	0.807	53	0.808	RI	440030002	73.7	59	0.809	59	0.809
	330150018	68	54	0.799	54	0.799		440071010	74	59	0.802	59	0.801
NH Max			56	0.821	56	0.821		440090007	76.3	62	0.821	61	0.810
NJ	340010006	74.3	58	0.788	58	0.786	RI Max			62	0.821	61	0.810
	340030006	77	62	0.806	62	0.806	VA	510130020	81.7	64	0.793	64	0.793
	340071001	82.7	66	0.802	66	0.802		510590030	82.3	64	0.789	64	0.789
	340110007	72	57	0.792	57	0.792		511071005	73	57	0.787	57	0.787
	340130003	78	62	0.802	62	0.802		511530009	70	55	0.796	55	0.796
	340150002	84.3	67	0.802	67	0.802		515100009	80	62	0.785	62	0.785
	340170006	77	63	0.819	63	0.819	VA Max			64	0.796	64	0.796
	340190001	78	60	0.776	60	0.776	VT	500030004	63.7	51	0.813	51	0.813
	340210005	78.3	62	0.799	62	0.799	VT Max			51	0.813	51	0.813
	340219991	76	59	0.785	59	0.785							
	340230011	81.3	63	0.783	63	0.783							
	340250005	80	64	0.803	63	0.791							
	340273001	76.3	59	0.776	59	0.776							
	340290006	82	64	0.785	64	0.785							
	340315001	73.3	60	0.826	60	0.826							
	340410007	66	51	0.774	51	0.774							
NJ Max			67	0.826	67	0.826							

Contribution Assessment Results

The following section will look at the contribution assessment results that were obtained from the 2023 projections. In many cases we will only look at the results for the four monitors (Sherwood Island Connector, CT: 90019003, Edgewood, MD: 240251001, Susan Wagner, NY: 360850067, and Babylon, NY: 361030002) that were found to be projected to violate the NAAQS in 2023; however, monitor specific data for other monitors is available and can be obtained from OTC.

NO_x Emissions Inventories

Figure 13-5 shows the NO_x emission inventories by state and sector that were used in 2023 source apportionment modeling (more details on these inventories are available Section 9) based on how they were tagged and the portion of emissions within the modeling domain that occurred from May 31-August 31. One can see the importance of NO_x emissions from onroad diesel, nonroad, and onroad nondiesel in nearly every state, EGUs and non-EGU point sources in many states, non-point oil & gas in states Marcellus shale states, and commercial marine vessels in the EEZ. It would be expected that these sectors will show up as high contributors when the contribution assessment data is analyzed.

Figure 13-5: NO_x emissions (thousands of tons) included for each state and sector in the 2023 modeling

* Indicates that only a portion of the geography is included in the modeling domain

^ SESARM RWC totals do not include VA or WV

Sector Analysis

Figure 13-3 though Figure 13-6 examine each exceedance day at the four monitors of concern and the extent that each sector contributes on each day. Each exceedence day is in order by the total future DVF, though contribution from international emissions and boundary conditions are excluded from display.

One can see that from one exceedance day to the next there is variation in the percentage contribution from various sectors with nonroad, onroad diesel, ERTAC EGU, and non- point being the highest contribitors.

Figure 13-3: Anthropogenic US intra-domain contribution by sector on dates projected to exceed the 70 ppb NAAQS in 2023 to Sherwood Island Connector, CT (90019003) ordered by total DVF

Figure 13-5: Anthropogenic US intra-domain contribution by sector on dates projected to exceed the 70 ppb NAAQS in 2023 to Susan Wagner, NY (360850067) ordered by total DVF

Figure 13-6: Anthropogenic US intra-domain contribution by sector on dates projected to exceed the 70 ppb NAAQS in 2023 to Babylon, NY (361030002) ordered by total DVF

However, this approach hides some of the variability that can be seen in how much a sector can be projected to contribute to nonattainment. Figure 13-7 through Figure 13-10 show the maximum, average and minimum contributions at each monitor on a projected exceedance day. ERTAC EGU and Non-Point sectors typically have a lot of variability at each of these monitors with maximums that show this sector can be the highest contributor on a given day, but barely negligible on others. Mobile sources, nonroad in particular, have less variability and remain consistently high even on the days with the minimum contribution. Non-EGU point, marine vessel, and oil & gas sources can also show up as an important contributor to a particular monitor, but not necessarily at all four of the monitors examined.

Figure 13-7: Maximum, average, and minimum contribution by sector on exceedance days at Sherwood Island Connector, CT (90019003)

Figure 13-9: Maximum, average, and minimum contribution by sector on exceedance days at Susan Wagner, NY (360850067)

State Analysis

The states listed in Table 13-6 are projected to contribute at least 1% to Sherwood Island Connector monitor in 2023. The nonroad sector is the most consistent category to contribute. Cement kilns play a role in contribution from several states. EGUs also play a role in contribution from many states, but Michigan, Pennsylvania, and West Virginia do not have an EGU contribution in the top three.

Table 13-6: States projected to contribute at least 0.7 ppb in 2023 to Sherwood Island Connector, CT (90019003) and the three sectors that contribute the most from that state

	СТ	MD	МІ	NJ	NY	ОН	PA	VA	wv
1 st Most	Nonroad	Non- Point	Nonroad	Non-Point	Non-Point	O&G Non- Point	Cement Kilns	Non-Point	Cement Kilns
2 nd Most	Non-Point	Cement Kilns	Non-Point	Nonroad	MWC	ERTAC EGU	Non- Point	CMV C1C2C3	Non-Point
3 rd Most	Onroad Non- Diesel	ERTAC EGU	Onroad Non- Diesel	MWC	ERTAC EGU	MWC	Nonroad	Nonroad	Nonroad

The states listed in Table 13-7 are projected to contribute at least 1% to Edgewood, MD in 2023. A similar pattern of source sectors holds up, though in this case EGUs from Pennsylvania and West Virginia show up as important contributors and oil and gas point sources from Pennsylvania do as well.

Table 13-7: States projected to contribute at least 0.7 ppb in 2023 to Edgewood, MD (240251001) and the three sectors that contribute the most from that state

	IN	КҮ	MD	MI	ОН	PA	VA	wv
1 st Most	Nonroad	Non-Point	MWC	Non-Point	ERTAC EGU	ERTAC EGU	Non-Point	Cement Kilns
2 nd Most	Non-Point	Other Non- EGU Point	Nonroad	Nonroad	O&G Non- Point	Non- Point	Nonroad	Non-Point
3 rd Most	Onroad Non- Diesel	Onroad Non- Diesel	CMV C1C2C3	MWC	Non-Point	O&G Point	Onroad Non- Diesel	ERTAC EGU

The states listed in Table 13-8 are projected to contribute at least 1% to Susan Wagner, NY in 2023. Susan Wagner has the most states listed as projected to contribute to nonattainment.

Table 13-8: States projected to contribute at least 0.7 ppb in 2023 to Susan Wagner, NY (360850067) and the three sectors that contribute the most from that state

	IL	IN	кү	MD	МІ	NJ	NY	он	PA	VA	wv
1 st	ERTAC	Non-Point	Non-Point	MWC	Nonroad	MWC	Non-	O&G Non-	Cemen	Non-	Cement
Most	EGU						Point	Point	t Kilns	Point	Kilns
2 nd	Nonroad	Nonroad	Other Non-	ERTA	Non-Point	Non-	ERTAC	ERTAC	MWC	ERTAC	Non-
Most			EGU Point	C EGU		Point	EGU	EGU		EGU	Point
3 rd	Non-Point	Onroad	Onroad	Non-	Onroad	ERTA	Nonroa	MWC	Non-	MWC	ERTAC
Most		Non-Diesel	Non-Diesel	Point	Non-Diesel	C EGU	d		Point		EGU

The states listed in Table 13-9 are projected to contribute at least 1% to Babylon, NY in 2023.

Table 13-9: States projected to contribute at least 0.7 ppb in 2023 to Babylon, NY (361030002) and the three sectors that contribute the most from that state

	IN	MD	МІ	NJ	NY	он	PA	VA	wv
1 st Most	Non-Point	Cement Kilns	Nonroad	Non-Point	Non-Point	O&G Non- Point	Cement Kilns	Non-Point	Cement Kilns
2 nd Most	Nonroad	Non-Point	ERTAC EGU	Nonroad	Onroad Non-Diesel	ERTAC EGU	Non-Point	CMV C1C2C3	Non-Point
3 rd Most	Onroad Non- Diesel	ERTAC EGU	Non- Point	MWC	ERTAC EGU	Nonroad	Nonroad	Nonroad	Nonroad

Another way to examine which sectors from which states are projected to contribute to nonattainment in 2023 is to look individually at each exceedance day. Figure 13-11 through Figure 13-14 shows which sector is projected to impact nonattainment the most on a day that was projected to exceed the 0.7 ppb NAAQS.

The first thing to be noticed is that the list of states is greater for each monitor than in the previous tables. That is because some states, (e.g., AL, DC, DE, GA, NC, TN, and WI) are projected to contribute to an exceedance on a given day even though they don't contribute using the method shown in the preceding tables.

When examining individual days Nonroad and ERTAC EGU are important contributing sectors, with nonroad typically being important in states nearby geographically and ERTAC EGU in states further away. Other Non-EGU Point and onroad diesel also can be important contributing sectors from some sates on certain days. Finally oil & gas emissions, particularly non-point, from Pennsylvania also appear to be an important contributor on certain days.

Figure 13-12: Total days state is projected to contribute at least 0.7 ppb to exceedance in 2023 at Edgewood, MD (240251001) and sector that contributes the most during the exceedance date from the state

Figure 13-13: Total days state is projected to contribute at least 0.7 ppb to exceedance in 2023 at Susan Wagner, NY (360850067) and sector that contributes the most during the exceedance date from the state

Figure 13-14: Total days state is projected to contribute at least 0.7 ppb to exceedance in 2023 at Babylon, NY (361030002) and sector that contributes the most during the exceedance date from the state

It is also important to look at the variability as to the contribution each state is projected to provide to nonattainment in 2023. Figure 13-15 through Figure 13-18 show the maximum, average, and minimum contribution any individual state makes to one of the four examined monitors. With the exception of Sherwood Island, the home state on maximum contributes the most to nonattainment, and in Edgewood and Babylon even on the average day. For Sherwood Island, New York exhibits that contribution, which would be expected since the monitor is located directly across from New York.

Nearby states make up the next cluster of contributors. This again is to be expected since we saw in the sector analysis that mobile sources are high contributors on many days and more distant states will not provide the same level of mobile emissions to the air mass. Midwestern/Ohio River Valley states make up the next cluster of states, which would be expected as well given the importance of EGU and large non-EGU point sources seen in the previous section.

Figure 13-15: Maximum, average, and minimum contribution by state on exceedance days at Sherwood Island, CT (90019003)

Figure 13-16: Maximum, average, and minimum contribution by state on exceedance days at Edgewood, MD (240251001)

Figure 13-17: Maximum, average, and minimum contribution by state on exceedance days at Susan Wagner, NY (360850067)

Figure 13-18: Maximum, average, and minimum contribution by state on exceedance days at Babylon, NY (361030002)

Diurnal Analysis

Figure 13-19 though Figure 13-22 examines the contribution from onroad, nonroad, and ERTAC EGUs on each day of the week through the entirety of the modeled days at four of the monitors of focus. Two monitors, Edgewood, MD and Susan Wagner, NY, are projected to have exceedances on weekend days and overall their concentrations are not projected to differ greatly between weekends and weekdays. There does appear at all four monitors to be a stronger signal from onroad contribution on weekdays than on weekends, but differences are minor.

Figure 13-19: Ozone concentration grouped by day of the week in Julian days at Sherwood Island Connector, CT (90019003)

Figure 13-21: Ozone concentration grouped by day of the week in Julian days at Susan Wagner, NY (360850067)

Comparison with EPA Modeling

Finally, to compare the linkages found as a result of the OTC analysis with similar EPA modeling. We used the same technique for calculating linkages to a receptor from EPA's four step process used in the 'en' platform contribution modeling (US EPA December 2016). The first difference as seen in Table 13-10 is concerning which monitors are projected to attain is that the monitoring results are slightly different. EPA's modeling projects an additional monitor in Connecticut to not attain the NAAQS, while Edgewood, MD and Susan Wagner, NY are projected to attain. Given that OTC relied heavily on EPA's 'en' emission inventories (as shown in Section 9) and that the major differences between the two modeling platforms is the EGU inventory that was used, one might expect that heavy reliance on a particular operating pattern of EGUs in the future year may be somewhat problematic if a bright-line test in employed.
				EPA 'en'	G	amma 2023
State	County	ID	DVF (ppb)	1% Linkage	DVF (ppb)	1% Linkage
СТ	Fairfield	90019003	73	CT, <mark>IN, KY,</mark> MD, NJ, NY, OH, PA, VA, WV	71	CT, MD, <mark>MI,</mark> NJ, NY, OH, PA, VA, WV
СТ	Fairfield	90013007	71	CT, MD, MI, NJ, NY, OH, PA, WA WV	Attaining	
MD	Harford	240251001	Attaining		71	IN, KY, MD, MI, OH, PA, VA, WV
NY	Queens	360850067	Attaining		71	IL, IN, KY, MD, MI, NJ, NY, OH, PA, VA, WV
NY	Suffolk	361030002	74	CT, <mark>IL, IN, KY</mark> , MD, NJ, NY, OH, PA, VA	72	CT, MD, <mark>MI,</mark> NJ, NY, OH, PA, VA, WV

Table 13-10: 1% contribution linkages in EPA 'en' and OTC Gamma 2023 CAMx contribution modeling*

* Red indicates a state that was not found to contribute in both modeling analyses.

There is also a difference in the states linked to each monitor as well. For instance, Indiana and Kentucky are linked to Sherwood Island Connector, CT in the EPA modeling and in the OTC modeling Michigan is linked to the Sherwood Island Connector, CT monitor but Indiana and Kentucky are not. For Babylon, NY, Illinois, Indiana, and Kentucky are linked in EPA modeling and Michigan and West Virginia are linked to the monitor in the OTC modeling. Since meteorology and many of the emissions are consistent between the two platforms this is largely due to projected behavior from EGUs.

State Specific Contribution

This section will walk through the first two steps of the four step process EPA has outlined in previous transport rules to determine which states are projected to contribute to nonattainment or interfere with maintenance using the OTC 2023 CAMx modeling.

Step 1: Identify Downwind Air Quality Problems

The 2023 CAMx modeling identified the monitors listed in Table 13-11 in the Eastern U.S. as being projected to be in nonattainment (an average design value greater than or equal to 71 ppb) or maintenance (a maximum design value greater than or equal to 71 ppb) of the 2015 Ozone NAAQS in 2023.

Site	State	County	Monitor Name	Avg. DV	Max DV	2023 Status
90010017	Connecticut	Fairfield	Greenwich	69.5	71.8	Maintenance
90013007	Connecticut	Fairfield		70.6	74.5	Maintenance
90019003	Connecticut	Fairfield	Sherwood Island	71.9	74.7	Nonattainment
90099002	Connecticut	New Haven	New Haven	69.9	72.6	Maintenance
240251001	Maryland	Harford	Edgewood	71.1	74.2	Nonattainment
360810124	New York	Queens	Queens College	69.4	71.2	Maintenance
360850067	New York	Richmond	Susan Wagner	71.1	72.6	Nonattainment
361030002	New York	Suffolk	Babylon	72.0	73.5	Nonattainment

Table 13-11: Monitors projected to be in nonattainment or to be in maintenance in 2023 in the Eastern US

Step 2: Identify Upwind States

When examining the receptors identified in the 2023 CAMx modeling as projected to be in nonattainment or maintenance of the 2015 Ozone NAAQS we calculated the contribution from upwind states in two fashions. The first approach, defined as "DVF Adjusted Exceedance Average," began by taking all days modeled to be an exceedance at the monitors in Table 13-11. The contribution from each state was averaged across all of those days. The contributions were then adjusted by the ratio of the DVF at the monitor to the 8-hour ozone modeled by CAMx. The second approach, defined as "DVF Adjusted Four Highest Average" began by taking all days modeled to be an exceedance, but in this case averaged the four highest contribution values on any of those days. This average again was adjusted by the ratio of the DVF to the 8-hour ozone modeled by CAMx. The intention of this second approach is to capture contributions by states that contribute significantly to at least 4 exceedances, but may not contribute significantly to every exceedance.

Table 13-12 shows the contribution from upwind states to the four monitors projected to be in nonattainment in 2023 and Table 13-13 shows the same type of data for the monitors projected to be in maintenance in in 2023. Any state-level contribution above 0.7 ppb (1% of the 2015 NAAQS) is highlighted in red. Additional details on selected monitors, for both contributions by state and sector are available in Appendix D.

	Sherwood Island,	СТ (90019003)	Edgewood, MD	(240251001)	Susan Wagner, N	Y (360850067)	Babylon, NY (361030002)		
State	Exceedance Avg.	4th High Avg.	Exceedance Avg.	4th High Avg.	Exceedance Avg.	4th High Avg.	Exceedance Avg.	4th High Avg.	
AL	0.166	0.248	0.307	0.751	0.217	0.433	0.104	0.180	
AR	0.098	0.146	0.080	0.146	0.062	0.113	0.072	0.120	
СТ	3.611	4.751	0.011	0.027	0.330	0.658	0.383	0.630	
DC	0.074	0.103	0.551	0.864	0.069	0.135	0.036	0.061	
DE	0.481	0.630	0.120	0.295	0.570	1.118	0.211	0.345	
GA	0.206	0.306	0.253	0.603	0.271	0.535	0.109	0.187	
IA	0.042	0.061	0.103	0.185	0.140	0.256	0.121	0.190	
IL	0.371	0.543	0.640	1.189	0.769	1.246	0.670	1.060	
IN	0.527	0.770	1.167	2.213	0.908	1.462	0.766	1.247	
KY	0.523	0.775	1.206	2.398	0.974	1.786	0.580	0.982	
LA	0.012	0.018	0.014	0.033	0.011	0.021	0.006	0.010	
MA	0.119	0.177	0.003	0.008	0.031	0.062	0.030	0.053	
MD	2.192	2.992	20.349	26.651	2.175	4.264	1.093	1.860	
ME	0.007	0.011	0.000	0.001	0.001	0.003	0.008	0.014	
MI	0.427	0.594	0.810	1.604	0.760	1.240	1.027	1.484	
MN	0.044	0.066	0.051	0.100	0.062	0.103	0.094	0.140	
MO	0.168	0.251	0.360	0.781	0.308	0.536	0.320	0.540	
MS	0.053	0.080	0.045	0.106	0.048	0.095	0.038	0.066	
NC	0.251	0.356	0.297	0.647	0.268	0.450	0.248	0.423	
NH	0.025	0.037	0.001	0.002	0.004	0.008	0.009	0.015	
NJ	8.217	9.503	0.343	0.856	11.084	13.215	8.677	9.896	
NY	15.332	17.111	0.465	1.128	7.671	12.319	16.944	20.045	
OH	1.004	1.368	3.054	4.550	1.912	2.794	1.620	2.467	
PA	6.784	8.003	5.404	10.740	9.202	12.485	6.012	8.564	
RI	0.025	0.038	0.000	0.001	0.004	0.009	0.005	0.008	
SC	0.096	0.142	0.078	0.180	0.092	0.172	0.056	0.095	
TN	0.292	0.435	0.357	0.793	0.375	0.725	0.259	0.444	
ТΧ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
VA	1.485	2.104	3.833	6.857	1.711	3.264	0.997	1.691	
VT	0.014	0.022	0.001	0.003	0.005	0.011	0.003	0.005	
WI	0.131	0.192	0.195	0.375	0.313	0.516	0.285	0.428	
WV	0.748	1.065	2.304	3.467	1.342	2.244	0.794	1.266	
Max	15 222	17 111	20 2/0	26 651	11 004	12 215	16 044	20.045	

Table 13-12: State level contribution (ppb) to monitors projected to be in nonattainment in 2023

	Greenwich, CT	(90010017)	Stratford, CT	(90013007)	New Haven, CT	(90099002)	Queens College, NY (360810124)		
State	Exceedance Avg.	4th High Avg.	Exceedance Avg.	4th High Avg.	Exceedance Avg.	4th High Avg.	Exceedance Avg.	4th High Avg.	
AL	0.062	0.140	0.101	0.126	0.065	0.098	0.015	0.026	
AR	0.052	0.116	0.101	0.126	0.069	0.104	0.021	0.030	
СТ	7.942	9.898	5.343	6.168	6.117	6.865	0.324	0.564	
DC	0.046	0.096	0.066	0.081	0.044	0.057	0.052	0.089	
DE	0.204	0.412	0.336	0.392	0.326	0.401	0.364	0.631	
GA	0.076	0.169	0.125	0.156	0.070	0.105	0.050	0.085	
IA	0.057	0.122	0.046	0.058	0.066	0.096	0.186	0.271	
IL	0.392	0.850	0.407	0.508	0.518	0.760	0.867	1.287	
IN	0.467	1.016	0.532	0.665	0.626	0.926	0.745	1.190	
KY	0.347	0.758	0.389	0.486	0.488	0.727	0.296	0.477	
LA	0.004	0.010	0.007	0.009	0.005	0.008	0.000	0.000	
MA	0.066	0.147	0.066	0.082	0.108	0.161	0.005	0.009	
MD	1.240	2.467	1.918	2.328	1.361	1.818	1.549	2.667	
ME	0.017	0.037	0.004	0.005	0.009	0.014	0.000	0.000	
MI	0.388	0.716	0.463	0.578	0.453	0.635	1.536	2.254	
MN	0.037	0.074	0.052	0.065	0.050	0.073	0.113	0.162	
MO	0.172	0.383	0.182	0.228	0.229	0.342	0.334	0.570	
MS	0.028	0.062	0.047	0.058	0.030	0.045	0.003	0.006	
NC	0.277	0.589	0.259	0.324	0.302	0.441	0.262	0.433	
NH	0.022	0.048	0.015	0.019	0.023	0.035	0.000	0.000	
NJ	6.621	9.388	7.160	8.023	5.734	6.618	8.368	10.431	
NY	17.074	19.618	15.453	15.873	15.466	16.971	12.990	16.703	
OH	0.992	2.003	0.885	1.106	1.326	1.895	1.855	2.516	
PA	5.186	7.499	6.334	6.935	5.746	7.012	6.179	9.080	
RI	0.011	0.024	0.014	0.018	0.026	0.039	0.000	0.000	
SC	0.059	0.129	0.099	0.124	0.056	0.084	0.073	0.126	
TN	0.148	0.327	0.233	0.292	0.200	0.298	0.038	0.057	
ТΧ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
VA	1.247	2.618	1.338	1.625	0.891	1.228	1.483	2.533	
VT	0.010	0.024	0.009	0.012	0.013	0.020	0.000	0.000	
WI	0.118	0.241	0.149	0.186	0.154	0.218	0.474	0.660	
WV	0.651	1.151	0.552	0.688	0.673	0.957	0.660	1.045	
Max	17.074	19.618	15.453	15.873	15.466	16.971	12.990	16,703	

Table 13-13: State level contribution (ppb) to monitors projected to be in maintenance in 2023

References

Clean Air Act Amendments of 1990 (United States | US 1990).

- Cross-State Air Pollution Rule Update for the 2008 Ozone NAAQS, 81 (United States | US [Final Rule] 2016).
- US EPA 2016, Air Quality Modeling Technical Support Document for the 2015 Ozone NAAQS Preliminary Interstate Transport Assessment, Research Triangle Park, NC, accessed January 6, 2017, from <https://www.regulations.gov/contentStreamer?documentId=EPA-HQ-OAR-2016-0751-0036&disposition=attachment&contentType=pdf>.
- Notice of Availability of the Environmental Protection Agency's Preliminary Interstate Ozone Transport Modeling Data for the 2015 Ozone National Ambient Air Quality Standard (NAAQS), 82 (United States US [Notice Of Data Availability] 2017).

Section 14. Episodic Modeling using the 2011 Ozone Transport Commission Modeling Platform

Overview

This section presents procedures the OTC is using or plans to use to for episodic model runs using the CMAQ modeling platform, an acceptable photochemical model. The focus of this modeling is to provide analyses to guide SIP development for the eight-hour ozone standard using a future year of 2018 and potentially be used in the WOE analyses in the aforementioned SIPs. The OTC Commissioners and Air Directors requested that the OTC Modeling Committee develop this tool to allow sensitivity and screening modeling to occur with greater ease and speed than occurred with full year photochemical runs.

The modeling will use a base case episode from June 30 to August 4, 2011. This time period aligns with the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) measurement campaign that took place over Maryland. Using a modeling a period of a month will dramatically reduce the time and computing resources necessary to model the extensive number of scenarios needed to properly evaluate control programs that can be included in Ozone SIPs.

The objective of this modeling protocol is to maintain and enhance the technical credibility of the modeling study by describing the procedures that will take place and result in a successful modeling analysis. By including information as to why episodes were selected, the modeling platform used, the model based evaluation of the selected episode, and on how modeling runs should be conducted, the OTC are ensuring a replicable modeling exercise that will stand up to scrutiny.

Selection of Episodes

In recent years the OTC has relied on two modeling platforms for planning work. Both modeling platforms use CMAQ for photochemical modeling. The first of these platforms uses 2007 as a base year for meteorology and emissions inventories, and the second uses 2011. The committee determined that no new modeling platform would be developed as a result of this work thus limiting the choice of episodes of ozone pollution during only those two years. In 2007 and 2011 the modeling committee found four episodes, two per year, that were considered to be worthy of further analysis. These were time periods with high ozone values and a relatively large number of exceedances of the 2008 75 ppb NAAQS, which suggested a sustained ozone episode throughout the OTR.

Given the level of resources available and that this modeling analysis will only be used for screening purposes, screening nature, the OTC determined that only one of four episodes be used. The time periods of the four episodes considered for this screening analysis are in Table 14-1 and general informative maps of the four episodes in question can be seen in Figure 14-1 to Figure 14-8.

Table 14-1: Descriptions of episodes

	TIME SPAN	NUMBER OF DAYS
Episode A	May 25-June 12, 2011	19
Episode B	June 27-August 2, 2011	37
Episode C	June 15-June 28, 2007	19
Episode D	July 30-August 4, 2007	5

The OTC wanted to choose an episode(s) that complies with the primary criteria set forth in EPA's 8-hour ozone modeling guidance for selecting ozone episodes for attainment demonstration modeling:

- Select periods, preferably during NEI years, for which extensive air quality/meteorological databases exist;
- Model a sufficient number of days so that the modeled attainment test can be applied at all of the ozone monitoring sites that are in violation of the NAAQS;
- Model time periods that include pollution concentration episodes to ensure the modeling system appropriately include a mix of high and low periods; and
- Select a mix of episodes reflecting a variety of meteorological conditions that frequently correspond with observed eight-hour daily maximum ozone concentrations greater than the level of the NAAQS at different monitoring sites (US EPA 2014).

Figure 14-1: Monitored Ozone Data for Episode A (May 25-June 12, 2011)

Figure 14-2: Number of Days with Ozone > 75ppb for Episode A

Figure 14-3: Monitored Ozone Data for Episode B (June 27-August 2, 2011)

Figure 14-5: Monitored Ozone Data for Episode C (June 15-June 28, 2007)

Figure 14-4: Number of Days with Ozone > 75ppb for Episode B (June 27-August 2, 2011)

Figure 14-6: Number of Days with Ozone > 75ppb for Episode C (June 15-June 28, 2007)

Figure 14-7: Monitored Ozone Data for Episode D (July 30-August 4, 2007)

Figure 14-8: Number of Days with Ozone > 75ppb for Episode D (July 30-August 4, 2007)

Available Data Sets

The summer of 2011 was selected as the best time period due to the third criteria. This time period corresponds with the time period studied by the DISCOVER-AQ campaign, which provides an additional wealth of data in regards to air quality than is otherwise available. Given the 2007 episodes do not have the corresponding data sets; OTC determined that use of 2011 is preferable.

Additionally, the inventories available for use in 2011 are more recent, built upon the NEI, developed with more modern tools (e.g. MOVES 2014 rather than MOVES 2010), and are in formats that the states are now more accustomed to work with (e.g. ff10). These factors lead to a narrowing of either Episode A or B being chosen.

Sufficient Time Span

It is important that there are enough days with high ozone that can be used when calculating relative reduction factors. When comparing the four episodes Episode B has a greater magnitude of exceedances in terms of both the number of monitor-days and the maximum number of exceedances at a given monitor. When looking at individual states there are a greater number of exceedances in New England save Connecticut in Episode C, but only one monitor is exceeding in each of those states so focusing on the states from Connecticut south is of greater importance in choosing episodes. Though as a whole Episode B is the most sufficient in terms of exceedances, none of the episodes seem to capture the meteorological conditions found during the 2013, 2014, and 2015 ozone season where exceedances were centered on the New York City nonattainment area rather than the Baltimore nonattainment area. Also since Episode D is so short, only five days long, the additional trait of having days that lack exceedances was not met as well.

Table 14-2. Exceedances of 75ppb by	state uu	ring ep	soues	in the O	IN									
	СТ	DC	DE	MA	MD	ME	NH	NJ	NY	ΡΑ	RI	ντ	VA	Total
Monitor-Days Ep. A	20	7	17	4	66	1	0	50	30	63	3	0	12	273

Table 14-2: Exceedances of 75ppb by state during episodes in the OTR

Max Days/Monitor Ep. A	3	4	5	2	6	1	0	5	5	5	1	0	4	6
Monitor-Days Ep. B	41	10	22	19	90	4	5	54	43	79	5	1	17	390
Max Days/Monitor Ep. B	6	7	5	2	13	2	2	6	7	7	2	1	6	13
Monitor-Days Ep. C	29	6	5	28	38	14	7	25	34	51	8	0	20	265
Max Days/Monitor Ep. C	4	2	2	4	4	2	2	3	3	5	3	0	3	5
Monitor-Days Ep. D	21	5	11	15	40	9	4	33	36	68	4	0	19	265
Max Days/Monitor Ep. D	4	3	3	2	4	2	2	4	4	4	2	0	3	4

Meteorological Conditions

Several major transport patterns can play an important role in creating the conditions for ozone exceedances to occur in the OTR; 1) over mountain interregional transport from sources in the Midwest, 2) multi-state transport from the nocturnal low level jet (NLLJ), and 3) local stagnation (Hudson et al. October 2006). Following the determination of which time periods were appropriate for analysis, it was necessary to determine whether these they had an appropriate distribution of the different ozone conducive transport patterns. Selection of an episode that was not representative could have the effect of causing strategies needed to reduce ozone originating from a particular region going unrealized or not being sufficient to overcome situations where all three transport patterns are acting in tandem.

To determine the appropriateness of the episodes in regards to transport patterns HySplit was employed to conduct back trajectory analyses for two monitors, Westport CT and Edgewood, MD, which have particularly persistent ozone problems (Stein, Draxler, Rolph, Stunder, Cohen and Ngan 2015; Rolph, Stein and Stunder 2017). The trajectory analyses were conducted at 100m height level. Figure 14-9 to Figure 14-16 show the trajectory analyses for the four episodes for the two monitors, odd and even figures respectively. Three of the episodes were found to have the necessary transport patterns to result in sufficient analyses, whereas Episode D lacked a southerly airflow.

Figure 14-11: Wind trajectories of ozone (ppb) for Westport, CT monitor during Episode B (June 27-August 2, 2011)

Figure 14-13: Wind trajectories of ozone (ppb) for Westport, CT monitor during Episode C (June 15-June 28, 2007)

Figure 14-15: Wind trajectories of ozone (ppb) for Westport, CT monitor during Episode D (July 30-August 4, 2007)

Figure 14-12: Wind trajectories of ozone (ppb) for Edgewood monitor during Episode B (June 27-August 2, 2011)

Figure 14-14: Wind trajectories of ozone (ppb) for Edgewood, MD monitor during Episode C (June 15-June 28, 2007)

Figure 14-16: Wind trajectories of ozone (ppb) for Edgewood monitor during Episode D (July 30-August 4, 2007)

Summary

After examining each episode according to EPA's four criteria, Episode B was selected. It occurred during the year where better inventory data is available, contained a high number of ozone exceedances as well as enough days without ozone exceedances, and a fair mix of meteorological conditions.

Modeling Platform

Model Selection

To ensure that a modeling study can be successfully used as technical support for an attainment demonstration SIP, the air quality model must be scientifically sound and appropriate for the intended application, and be freely accessible to all stakeholders. In a regulatory environment, it is crucial that oversight groups (e.g., EPA), the regulated community, and the interested public have access to and also be convinced of the suitability of the model. EPA in guidance cites the Community Multi-scale Air Quality Model (CMAQ) and the CAMx as two appropriate photochemical models to use (US EPA 2014). OTC staff has prior experience using CMAQ, CMAQ is open source allowing for greater scrutiny, and comparisons during prior analyses have shown CMAQ to be superior when analyzing Ozone in the OTR. For these reasons the modeling committee has chosen CMAQ to conduct the episodic modeling analyses. Several other models are needed to provide inputs to the photochemical model including a meteorological model and an emission processing model. The full list of the models used in the analyses is in Table 14-3.

Table 14-3: Model versions used in OTC episodic modeling analyses

Model and Version
CMAQ v. 5.0.2
WRF v. 3.4
SMOKE v. 3.5.1 (C3 Marine Emissions Processed with SMOKE v. 3.6)
BEIS v. 3.6
MOVES 2014
ERTAC EGU v. 2.3

More details on the selection of the photochemical modeling platform that the OTC decided to use can found in the OTC modeling protocol.

Emissions Inventory

When work began on episodic modeling the Alpha 2 inventory was used to supply emissions estimates. There were no changes made beyond the Alpha 2 for the episodic modeling runs. Details on the Alpha inventory are located in "Technical Support Document Emission Inventory Development for 2011, 2018, and 2028 for the Northeastern US Alpha 2 Version (McDill, McCusker and Sabo 2015)."

Monitor to Model Comparison

When comparing the modeled ozone values obtained from a run that only contains the days in July (a slightly shorter period than the episode to be modeled) and the full ozone season there is good agreement between the results. Table 14-4, Figure 14-17, July only, compared to Figure 14-18, full

ozone season, and Figure 14-19, July only, compared to Figure 14-20, full ozone season, show consistent results for both the 2011 and 2018 modeled results in design value calculations, though in both cases values are higher in the full ozone season, which would be expected since they are based on extreme (4th high) rather than average values.

Table 14-4: Evaluation of Monitors in the OTR

	Count	% Compared to Monitors with Base
Monitors with Base Values	193	
Monitors with Future Values	159	83%
Monitors with > 5% differential*	12	6%
Monitors with > 1% differential*	58	30%
*Between July only run and full ozo	ne season	run

Figure 14-17: 4th high 8-hour ozone from July only 2011 runs

Figure 14-19: 4th high 8-hour ozone from July only 2018 runs

Figure 14-18: 4th high 8-hour ozone from full ozone season 2011 runs

Figure 14-20: 4th high 8-hour ozone from full ozone season 2018 runs

When you begin to examine the geographic span of monitors that have greater differential between the full ozone season and the July run they are largely found along the Southern and coastal OTR, with the highest differentials along the coast as can be seen in Figure 14-21 and more clearly in Figure 14-22. Again this would be expected since these are the areas that are most likely to have higher ozone values in other months during the ozone season and that are no longer being considered in calculating RRFs.

Figure 14-21: Comparison of differences (2018 minus 2011) of 4th high 8-hour ozone from July only and full ozone season

Figure 14-22: Comparison of differences (2018 minus 2011) of 4th high 8-hour ozone from July only and full ozone season (only differences greater than 0.5 ppb)

Protocol

When conducting episodic modeling runs nearly all of the procedures laid out in the OTC modeling protocol should be followed with some exceptions.

Given the shorter time period in question the recommended method of using the "ten highest modeled 8-hour average daily maximum ozone days" to calculate the RRF (US EPA 2014) may not be appropriate for episodic modeling. This would result in nearly one third of all days being included in the calculation and would also likely include days that would not be included in a full ozone season analysis. Thus at least six maximum modeled 8-hour average daily maximum ozone days should be used when calculating RRF.

The modeling runs consisted of a two week spin up period prior to the actual July 1 - 31 episodic modeling run. More information concerning the air quality monitors is in Appendix C.

Table 14-5: Monitor comparison of 4th high 8-he	our ozone from July only and full ozone season 2018 runs
---	--

State	AQS Code		Desi	gn Value		State	AQS Code		Desig	n Value	
		2011	2018 July	2018 O.S.	Diff			2011	2018 July	2018 O.S.	Diff
СТ	90010017	80.3	81.034	80.685	-0.349	NY	360010012	68	-999	61.286	NA
	90011123	81.3	72.71	72.691	-0.019		360050133	74	79.849	76.649	-3.2
	90013007	84.3	77.907	78.452	0.545		360130006	73.3	66.032	65.967	-0.065
	90019003	83.7	85.379	85.602	0.223		360130011	74	66.808	66.161	-0.647
	90031003	73.7	64.68	65.415	0.735		360150003	66.5	-999	-999	NA
	90050005	70.3	61.648	62.902	1.254		360270007	72	62.813	63.434	0.621
	90070007	79.3	69.913	70.257	0.344		360290002	71.3	65.728	64.988	-0.74
	90090027	74.3	68.771	69.849	1.078		360310002	70.3	-999	-999	NA
	90099002	85.7	77.643	77.319	-0.324		360310003	67.3	-999	-999	NA
	90110124	80.3	68.68	71.804	3.124		360337003	45	-999	-999	NA
	90131001	75.3	66.485	66.797	0.312		360410005	66	-999	-999	NA
DE	100010002	74.3	67.243	66.842	-0.401		360430005	62	-999	-999	NA
	100031007	76.3	68.343	67.815	-0.528		360450002	71.7	64.116	62.405	-1.711
	100031010	78	69.803	69.463	-0.34		360530006	67	-999	-999	NA
	100031013	77.7	69.349	68.837	-0.512		360610135	73.3	76.408	75.048	-1.36
	100032004	75	66.939	66.445	-0.494		360631006	72.3	66.165	65.816	-0.349
	100051002	77.3	68.855	67.969	-0.886		360650004	61.5	-999	-999	NA
	100051003	77.7	69.721	69.584	-0.137		360671015	69.3	63.307	62.962	-0.345
DC	110010041	76	66.838	66.439	-0.399		360715001	67	-999	59.979	NA
	110010043	80.7	70.971	70.548	-0.423		360750003	68	60.928	59.592	-1.336
ME	230010014	61	56.392	56.189	-0.203		360790005	70	61.868	61.867	-0.001
	230031100	51.3	-999	-999	NA		360810124	78	79.322	79.877	0.555
	230052003	69.3	63.456	62.939	-0.517		360830004	67	-999	60.12	NA
	230090102	71.7	67.621	67.443	-0.178		360850067	81.3	78.321	78.317	-0.004
	230090103	66.3	61.674	61.976	0.302		360870005	75	66.758	67.648	0.89
	230112005	62.7	-999	-999	NA		360910004	67	-999	-999	NA
	230130004	67.7	63.319	62.902	-0.417		361010003	65.3	60.963	60.723	-0.24
	230173001	54.3	-999	-999	NA		361030002	83.3	81.147	82.656	1.509
	230194008	57.7	-999	-999	NA		361030004	78	71.541	71.143	-0.398
	230230006	61	56.283	56.124	-0.159		361030009	78.7	74.622	74.572	-0.05
	230290019	58.3	55.227	54.849	-0.378		361111005	69	-999	63.663	NA
	230290032	53	49.992	50.516	0.524		361173001	65	58.222	57.513	-0.709
	230310038	60.3	-999	-999	NA		361192004	75.3	80.265	79.146	-1.119
	230310040	64.3	-999	-999	NA	PA	420030008	76.3	70.151	70.966	0.815
	230312002	73.7	65.971	65.435	-0.536		420030010	73.7	67.761	68.548	0.787
MD	240030014	83	72.282	71.801	-0.481		420030067	75.7	69.17	69.108	-0.062
	240051007	79	70.839	70.195	-0.644		420031005	80.7	73.668	73.61	-0.058
	240053001	80.7	74.298	74.253	-0.045		420050001	74.3	67.523	68.137	0.614
	240090011	79.7	72.25	73.125	0.875		420070002	70.7	64.915	65.082	0.167
	240130001	76.3	68.337	66.945	-1.392		420070005	74.7	69.157	69.437	0.28
	240150003	83	74.618	73.984	-0.634		420070014	72.3	66.566	66.864	0.298

	240170010	79	70.401	70.232	-0.169		420110006	71.7	63.259	62.976	-0.283
	240199991	75	67.297	67.238	-0.059		420110011	76.3	67.191	66.521	-0.67
	240210037	76.3	68.071	67.169	-0.902		420130801	72.7	67.622	67.5	-0.122
	240230002	72	61.729	60.884	-0.845		420170012	80.3	71.503	71.116	-0.387
	240251001	90	82.131	81.223	-0.908		420210011	70.3	65.447	65.594	0.147
	240259001	79.3	70.702	70.266	-0.436		420270100	71	66.19	65.723	-0.467
	240290002	78.7	70.546	69.287	-1.259		420279991	72	66.653	66.527	-0.126
	240313001	75.7	66 522	66 226	-0.296		420290100	76 3	68 279	68 571	0 292
	240330030	70	68 366	68 156	-0.21		420230100	72.3	67.66	67.58	-0.08
	240330030	010	71 777	71 462	0.21		420334000	, <u>2</u> .5	62.269	62 242	0.00
	240338003	02.5	/1.///	71.405	-0.314		420430401	747	02.506	02.245	-0.125
	240339991	80	69.564	69.317	-0.247		420431100	74.7	67.377	00.07	-0.707
	240430009	72.7	64.268	63.015	-1.253		420450002	/5./	67.978	67.573	-0.405
	245100054	/3./	67.471	67.953	0.482		420490003	74	65.697	65.875	0.178
MA	250010002	73	65.947	66.399	0.452		420550001	67	60.534	60.071	-0.463
	250034002	69	62.671	62.134	-0.537		420590002	69	60.955	61.877	0.922
	250051002	74	66.958	67.307	0.349		420630004	75.7	70.174	69.836	-0.338
	250070001	77	71.503	71.495	-0.008		420690101	71	63.517	62.911	-0.606
	250092006	71	63.903	61.92	-1.983		420692006	68.7	61.459	60.873	-0.586
	250094005	70	62.736	63.56	0.824		420710007	77	70.214	70.077	-0.137
	250095005	69.3	63.658	62.581	-1.077		420710012	78	70.247	70.555	0.308
	250130008	73.7	-999	64.893	NA		420730015	71	64.039	64.709	0.67
	250150103	64.7	-999	57.466	NA		420750100	76	67.564	67.277	-0.287
	250154002	71.3	62.625	62.259	-0.366		420770004	76	66.909	66.727	-0.182
	250170009	67.3	-999	59.921	NA		420791100	65	58.146	57.156	-0.99
	250171102	67	59.281	59.053	-0.228		420791101	64.3	57.46	56.35	-1.11
	250213003	72.3	63,731	63,421	-0.31		420810100	67	60.441	60.133	-0.308
	250250041	68.3	60.061	59.053	-1 008		420850100	76.3	68 463	67 847	-0.616
	250250042	60.7	53 484	53 21	-0 274		420890002	66.7	59.088	58 593	-0.495
	250230042	68.3	-000	60.426	0.274 NA		420910013	76.3	68 378	68 1/1	-0.237
	250270013	60	60 612	60.420	0 202		420010015	70.5	66 025	66 779	0.237
NILI	230270024	62.2	00.012	55.41	-0.202		420950025	60.7	61 631	61 500	-0.137
ИП	330012004	62.5	-999	55.566	INA NA		420958000	69.7	62.277	62.460	-0.022
	330030007	60.2	-999	-999	NA NA		420990301	00.5	50 720	02.409	0.192
	220074001	09.3 E0.7	-999	-999	NA		421010004	00	75.076	74 66	-0.381
	330074002	59.7	-999	-999	NA		421010024	05.5	73.070	74.00	-0.410
	330090010	59.7	-999	-999	INA NA		421011002	80	72.102	71.702	-0.4
	330111011	66.3	-999	58.849	NA		421119991	65	56.723	55.845	-0.878
	330115001	09	-999	-999	INA NA		421174000	09.7	64.731	64.008	-0.063
	330131007	64.7	-999	-999	INA 1 071		421250005	70	63.416	63.296	-0.12
	330150014	66	59.415	60.786	1.3/1		421250200	/0./	63.744	63.539	-0.205
	330150016	66.3	59.685	61.063	1.378		421255001	70.3	63.883	64.289	0.406
	330150018	68	-999	60.802	NA		421290006	71.7	64.732	65.446	0.714
NJ	340010006	74.3	66.127	67.387	1.26		421290008	71	63.148	64.008	0.86
	340030006	77	69.733	68.889	-0.844		421330008	72.3	66.991	66.132	-0.859
	340071001	82.7	73.005	73.557	0.552		421330011	74.3	67.582	67.503	-0.079
	340110007	72	64.716	64.543	-0.173	RI	440030002	73.7	67.261	66.734	-0.527
	340130003	78	71.508	70.249	-1.259		440071010	74	67.994	67.339	-0.655
	340150002	84.3	75.284	75.27	-0.014		440090007	76.3	69.022	69.001	-0.021
	340170006	77	71.082	70.64	-0.442	VT	500030004	63.7	-999	57.308	NA
	340190001	78	69.105	68.442	-0.663		500070007	61	-999	-999	NA
	340210005	78.3	69.778	69.481	-0.297	VA-	510130020	81.7	72.35	71.886	-0.464
	340219991	76	67.41	67.432	0.022	OTR	510590030	82.3	72.82	72.065	-0.755
	340230011	81.3	72.332	71.845	-0.487		511071005	73	65.663	64.914	-0.749
	340250005	80	71.841	71.981	0.14		511530009	70	62.617	62.726	0.109
	340273001	76.3	67,585	67,386	-0,199		515100009	80	70.794	70.092	-0,702
	340290006	82	72,874	71.9	-0.974						
	340290006 340315001	82 73.3	72.874 65.293	71.9 66.913	-0.974 1.62						

References

- Hudson, R, Downs, T, Fields, R, Kheirbek, I, Kleiman, G, Miller, P and Weiss, L 2006, *The Nature of the Ozone Air Quality Problem in the Ozone Transport Region: A Conceptual Description*, Boston, MA, accessed July 21, 2016, from http://170.63.70.137/eea/docs/dep/air/priorities/5a-ozone-conceptual-model.doc>.
- McDill, J, McCusker, S and Sabo, E 2015, 'Technical Support Document: Emission Inventory Development for 2011, 2018, and 2028 for the Northeastern U.S. Alpha 2 Version', accessed March 7, 2016, from http://marama.org/images/stories/documents/2011-2018-2028_Technical_Support_Docs/TSD%20ALPHA2%20Northeast%20Emission%20Inventory%20for%202011%202018%202028%20DraftFinal%2020151123.pdf
- Rolph, G, Stein, A and Stunder, B 2017, 'Real-time Environmental Applications and Display sYstem: READY', *Environmental Modelling & Software*, vol. 95, pp. 210–228.
- Stein, AF, Draxler, RR, Rolph, GD, Stunder, BJB, Cohen, MD and Ngan, F 2015, 'NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System', *Bulletin of the American Meteorological Society*, vol. 96, no. 12, pp. 2059–2077.
- US EPA 2014, 'Draft Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze', accessed from <https://www3.epa.gov/ttn/scram/guidance/guide/Draft_O3-PM-RH_Modeling_Guidance-2014.pdf>.

Model Evaluation Statistic Formulae Appendix A.

The statistical formulations that have been computed for each species are as follows:

 P_i and O_i are the individual (daily maximum 8-hour ozone or daily average for the other species) predicted and observed concentrations respectively, \overline{P} and \overline{O} are the average concentrations, respectively, and N is the sample size.

Observed average, in ppb:

Predicted average, in ppb (only use P_i when O_i is valid):

$$\overline{O} = \frac{1}{N} \sum O_i$$

$$\overline{P} = \frac{1}{N} \sum P_i$$

Normalized mean error (NME), in %:

$$R^{2} = \frac{\left[\sum (P_{i} - \overline{P})(O_{i} - \overline{O})\right]^{2}}{\sum (P_{i} - \overline{P})^{2} \sum (O_{i} - \overline{O})^{2}}$$

$$NME = \frac{\sum |P_i - O_i|}{\sum O_i} \times 100\%$$

Fractional error (FE), in %:

$$FE = \frac{2}{N} \sum \left| \frac{P_i - O_i}{P_i + O_i} \right| \times 100\%$$

Mean normalized gross error (MNGE), in %:

$$MNGE = \frac{1}{N} \sum \frac{\left|P_i - O_i\right|}{O_i} \times 100\%$$

Mean normalized bias (MNB), in %:

$$MNB = \frac{1}{N} \sum \frac{(P_i - O_i)}{O_i} \times 100\%$$

Normalized mean bias (NMB), in %:

$$NMB = \frac{\sum (P_i - O_i)}{\sum O_i} \times 100\%$$

Correlation coefficient, R²:

$$R^{2} = \frac{\left[\sum (P_{i} - \overline{P})(O_{i} - \overline{O})\right]^{2}}{\sum (P_{i} - \overline{P})^{2} \sum (O_{i} - \overline{O})^{2}}$$

Root mean square error (RMSE), in ppb:

$$RMSE = \left[\frac{1}{N}\sum (P_i - O_i)^2\right]^{1/2}$$

Mean absolute gross error (MAGE), in ppb:

$$MAGE = \frac{1}{N} \sum \left| P_i - O_i \right|$$

Mean bias (MB), in ppb:

$$MB = \frac{1}{N}\sum \left(P_i - O_i\right)$$

Mean fractionalized bias (MFB), in %:

 $MFB = \frac{2}{N} \sum \left[\frac{P_i - O_i}{P_i + O_i} \right] \times 100\%$

Appendix B. Emissions Inventory Files

This section lists the emission inventory sectors with a compilation of all of the SMOKE input files in the EMF system, in FF10 or ORL format, that were used for developing model ready emission files, for the Alpha, Alpha 2, Beta, Beta 2, Gamma inventories for the base year of 2011 and the projected years of 2017, 2018, 2020, 2023, and 2028, though not every projected year has a corresponding inventory level developed for it. The categories are based on the ways sectors are combined when processed through SMOKE by New York.

Agricultural

•	2011	
	0	Alpha, Alpha 2:
		ag_2011NElv2_NONPOINT_20141108_11nov2014_v0.csv
		Prepared by EPA, uploaded to MARAMA EMF on November 13, 2014.
	0	Beta, Beta 2, Gamma:
		ag_2011NEIv2_NONPOINT_20141108_04feb2015_v3
		Prepared by EPA, uploaded to MARAMA EMF on February 4, 2015.
•	2017	
	0	Beta, Beta 2:
		2017_NONPOINT_ag_28jun2016
		Prepared by MARAMA, uploaded to MARAMA EMF on June 28, 2016.
•	2018	
	0	Alpha, Alpha 2:
		MARAMA_Alpha_2018_ag_2011NElv2_NONPOINT_20141108_11nov2014_v0_csv_v0_14jan2015_nf_v1
		Prepared by MARAMA, uploaded to MARAMA EMF on January 14, 2015.
•	2020	
	0	Gamma:
		2020 ag 2011NEIv2 NONPOINT 04feb2015 v3 13sep2017
		Prepared by MARAMA, uploaded to MARAMA EMF on September 13, 2017.
		Note:New York DEC interpolated gridded emissions between 2017 and 2023 for other states in the domain
•	2023	
	0	Gamma:
		2023el aq MARAMA 2011NEIv2 NONPOINT 20141108 07sep2016 v0
		2023el ag 2011NEIv2 NONPOINT 20141108 07sep2016 v1
		Prepared by EPA, uploaded to MARAMA EMF on September 9, 2016.
•	2028	
	0	Alpha 2:
		MARAMA Alpha 2028 ag 2011NEIv2 NONPOINT 20141108 11nov2014 v0
		Prepared by MARAMA, uploaded to MARAMA EMF on August 20, 2015.
	0	Gamma:
		2028el_ag_2011NElv2_NONPOINT_20141108_23nov2016_v1
		MARAMA 2028el ag 2011NElv2 NONPOINT 20141108 17nov2016 v1
		Prepared by EPA, not uploaded to EMF, but available on EPA FTP site.
Ag	ricultur	al Fugitive Dust
•	2011	
•	2011	Alaba Alaba 2 Reta Reta 2 Gamma:
	0	afdust $2011NElv2$ NONPOINT $201/1108$ $11mav201/ v1 csv$
		EPA 2011 afdust no precipadi paved uppaved poNFly2RDOctates 23cen2011 v0 csv
		En ESTE ANASE NO PICUPAUL PARCA ANPARCA NONENZIN OSTALOS ZOSCPZOTE VOILOV

- Prepared by EPA, uploaded to MARAMA EMF on November 13, 2014 and September 28, 2014, respectively.
- 2017
 - Beta, Beta 2:

2017_NONPOINT_afdust_unadj_RPOstates_paved_unpaved_28jun2016 2017_NONPOINT_afdust_unadj_NEI_28jun2016 Prepared by MARAMA, uploaded to MARAMA EMF on June 28, 2016.

• 2018

0

Alpha, Alpha 2: MARAMA_Alpha_2018_afdust_2011NEIv2_NONPOINT_20141108_11nov2014_v1 MARAMA_Alpha_2018_EPA_2011_afdust_no_precipadj_paved_unpaved_noNEIv2RPOstates_23sep2014_v0_csv _v0_20jan2015_nf_v1 Prepared by MARAMA, uploaded to MARAMA EMF on August 25, 2015 and January 20, 2015, respectively.

o **2020**

Gamma:

2020_afdust_2011NElv2_NONPOINT_11nov2014_v1_13sep2017 2020_EPA_2011_afdust_no_precipadj_paved_unpaved_noNElv2RPOstates_23sep2014_v0_13sep2017.csv Prepared by MARAMA, uploaded to MARAMA EMF on September 13, 2017. Note:New York DEC interpolated gridded emissions between 2017 and 2023 for other states in the domain

- 2023
 - o Gamma:

2023el_from_afdust_2011NEIv2_NONPOINT_20141108_19sep2016_v3 2023el_from_EPA_2011_afdust_no_precipadj_paved_unpaved_noNEIv2RPOstates_19sep2016_v1 2023el_MARAMA_from_afdust_2011NEIv2_NONPOINT_20141108_19sep2016_v1 2023el_MARAMA_from_EPA_2011_afdust_no_precipadj_paved_unpaved_noNEIv2RPOstates_19sep2016_v1 Prepared by EPA, uploaded to MARAMA EMF on September 20, 2016.

• 2028

• Alpha 2:

MARAMA_Alpha_2028_afdust_2011NElv2_NONPOINT_20141108_11nov2014_v1 MARAMA_Alpha_2028_EPA_2011_afdust_no_precipadj_paved_unpaved_noNElv2RPOstates_23sep2014_v0 Prepared by MARAMA, uploaded to MARAMA EMF on August 20, 2015.

o Gamma:

2028el_from_afdust_2011NEIv2_NONPOINT_20141108_17nov2016_v1 2028el_from_EPA_2011_afdust_no_precipadj_paved_unpaved_noNEIv2RPOstates_17nov2016_v1 MARAMA_2028el_afdust_2011NEIv2_NONPOINT_20141108_17nov2016_v1 MARAMA_2028el_EPA_2011_afdust_no_precipadj_paved_unpaved_noNEIv2RPOstates_17nov2016_v1 Prepared by EPA, not uploaded to EMF, but available on EPA FTP site.

Area Source (Non-Point)

2011

- Alpha, Alpha 2:
- nonpt_2011NEIv2_NONPOINT_20141108_11nov2014_v1.csv pfc_2011NEIv2_NONPOINT_20141108_11nov2014_v0.csv agburn_monthly_2011NEIv2_NONPOINT_20141108_11nov2014_v0.csv Prepared by EPA, uploaded to MARAMA EMF on November 13, 2014.
- o Beta, Beta 2:

nonpt_2011NEIv2_NONPOINT_20141108_21jan2015_v5_MARAMA pfc_2011NEIv2_NONPOINT_20141108_11nov2014_v0.csv agburn_monthly_2011NEIv2_NONPOINT_20141108_11nov2014_v0.csv Prepared by EPA and MARAMA, uploaded to MARAMA EMF on September 9, 2015, November 13, 2014 and November 13, 2014, respectively.

o Gamma:

nonpt_2011NEIv2_NONPOINT_20141108_25apr2017_v5_MARAMA_v0 pfc_2011NEIv2_NONPOINT_11dec2015_v1.csv agburn_monthly_2011NEIv2_NONPOINT_03dec2015_v1 Prepared by EPA and MARAMA, uploaded to MARAMA EMF on September 9, 2015, December 28, 2015 and, December 23, 2015, respectively.

2017

0

Beta, Beta 2: 2017_NONPOINT_nonpt_29jun2016 2017_NONPOINT_pfc_29jun2016 agburn_monthly_2011NElv2_NONPOINT_20141108_11nov2014_v0.csv cement_newkilns_year_2018_from_ISIS2013_NEI2011v1_NONPOINT_12feb2015_v1_MARAMA 2017_cellulosic_inventory_06jan2014_v1_MARAMA 2017_cellulosic_new_lowa_plants_from2018docket_2011v6_2_ff10_28jan2015_v0 Prepared by MARAMA, uploaded to MARAMA EMF on June 29, 2016, June, 29, 2016, November 13, 2014, February 25, 2016, and February 25, 2016, respectively.

2018

o Alpha, Alpha 2:

MARAMA_Alpha_2018_nonpt_2011NElv2_NONPOINT_20141108_11nov2014_v1_csv_v0_21jan2015_nf_v1 MARAMA_Alpha_2018_pfc_2011NElv2_NONPOINT_20141108_11nov2014_v0_csv_21jan2015_nf_v1 MARAMA_Alpha_2018_agburn_monthly_2011NElv2_NONPOINT_20141108_11nov2014_v0_csv_v0_20jan2015_ nf_v1

Prepared by MARAMA, uploaded to MARAMA EMF on January 20, 2015.

o **2020**

 Gamma: 2020_nonpt_2011NElv2_NONPOINT_20141108_25apr2017_v5_MARAMA 2020_pfc_2011NElv2_NONPOINT_11dec2015_v1_13sep2017 2018_cellulosic_inventory_12sep2016_v2 agburn_monthly_2011NElv2_NONPOINT_03dec2015_v1.csv Prepared by MARAMA and EPA, uploaded to MARAMA EMF on October 12, 2017, September 13, 2017, October 4, 2016, and December 3, 2015, respectively Note:New York DEC interpolated gridded emissions between 2017 and 2023 for other states in the domain, excepting agburn

o **2023**

o Gamma:

2023_NONPOINT_nonpt_12may2017 2023el_from_nonpt_2011NEIv2_NONPOINT_2_113907436_14sep2016_v1 MARAMA_2023_from_pfc_2011NEIv2_NONPOINT_20141108_11nov2014_v0_14sep2016_v0 pfc_2025_2011v6_2_ff10_28jan2015_13sep2016_v2 2018_cellulosic_inventory_12sep2016_v2 Cellulosic_new_lowa_plants_from2018docket_2011v6_2_ff10_28jan2015_v0 cement_newkilns_year_2025_from_ISIS2013_NEI2011v1_NONPOINT_12sep2016_v3 agburn_monthly_2011NEIv2_NONPOINT_03dec2015_v1.csv Prepared by MARAMA and EPA, uploaded to MARAMA EMF on May 12, 2017 for the first listed file, December 3, 2015, for the last listed file and, October 4, 2016 for the remainder.

2028

o Alpha 2:

MARAMA_Alpha_2028_nonpt_2011NElv2_NONPOINT_20141108_11nov2014_v1 MARAMA_Alpha_2028_pfc_2011NElv2_NONPOINT_20141108_11nov2014_v0 MARAMA_Alpha_2028_agburn_monthly_2011NElv2_NONPOINT_20141108_11nov2014_v0 cement_newkilns_year_2025_from_ISIS2013_NEl2011v1_NONPOINT_12feb2015_v1_MARAMA 2018_cellulosic_inventory_06jan2014_v1_19nov2015_nf_v1_MARAMA Cellulosic_new_lowa_plants_from2018docket_2011v6_2_ff10_28jan2015_v0 Prepared by MARAMA, uploaded to MARAMA EMF on August 20, 2015, August 20, 2015, August 20, 2015, November 19, 2015, November 19, 2015, and March 17, 2015 respectively.

o Gamma:

2023el_from_nonpt_2011NElv2_NONPOINT_2_113907436_14sep2016_v1 MARAMA_2028el_nonpt_2011NElv2_NONPOINT_20141108_mar_23nov2016_v1 MARAMA_2028el_pfc_2011NElv2_NONPOINT_20141108_21nov2016_v1 pfc_2025_2011v6_2_ff10_28jan2015_13sep2016_v2 2018_cellulosic_inventory_12sep2016_v2 cellulosic_new_lowa_plants_from2018docket_2011v6_2_ff10_28jan2015_28jan2015_v0 cement_newkilns_year_2025_from_ISIS2013_NEl2011v1_NONPOINT_12sep2016_v3 agburn_monthly_2011NElv2_NONPOINT_03dec2015_v1.csv Prepared by EPA, most files not uploaded to EMF (files listed in other years are), but available on EPA FTP site.

Biogenics

All Years

- Alpha, Alpha 2: biogenic_2011NElv2_NONPOINT_20141108_11nov2014_v0.csv
 Prepared by EPA, uploaded to MARAMA EMF on November 13, 2014.
- Beta, Beta 2, Gamma: biogenic_2011ek_BEIS3_61_BELD4_1_08sep2016.csv
 Prepared by EPA, uploaded to MARAMA EMF on September 6, 2016.

C1/C2 Marine and Rail

- 2011
 - Alpha, Alpha 2, Beta, Beta 2: c1c2_offshore_2011NElv2_NONPOINT_20141108_11nov2014_v0.csv c1c2rail_2011NElv2_NONPOINT_20141108_11nov2014_v1.csv Prepared by EPA, uploaded to MARAMA EMF on November 13, 2014.
 Gamma:
 - Gamma: cmv_c1c2rail_2011NEIv2_NONPOINT_20141108_02sep2016_v1 rail_c1c2rail_2011NEIv2_NONPOINT_30nov2015_v1 Prepared by EPA, uploaded to MARAMA EMF on November 20, 2016 and December 22, 2015, respectively.
- 2017
 - Beta, Beta 2: 2017_NONPOINT_c1c2rail_27jun2016 2017_NONPOINT_c1c2offshore_06may2016.csv
 Prepared by MARAMA, uploaded to MARAMA EMF on June 27, 2016 and May 6, 2016, respectively.
- 2018
 - Alpha, Alpha 2:

MARAMA_Alpha_2018_c1c2_offshore_2011NElv2_NONPOINT_20141108_11nov2014_v0_csv_v0_20jan2015_v0 MARAMA_Alpha_2018_c1c2rail_2011NElv2_NONPOINT_20141108_11nov2014_v1_csv_v0_20jan2015_nf_v1 Prepared by MARAMA, uploaded to MARAMA EMF on January 20, 2015 and June 9, 2015, respectively.

- 2020
 - o Gamma:

2020_c1c2_offshore_2011NEIv2_NONPOINT_20141108_11nov2014_v0_14sep2017.csv 2020_cmv_c1c2rail_2011NEIv2_NONPOINT_20141108_02sep2016_v1_14sep2017 2020_rail_c1c2rail_2011NEIv2_NONPOINT_30nov2015_v1_14sep2017 Prepared by EPA, uploaded to MARAMA EMF on September 14, 2017.

- o **2023**
 - o Gamma:

2023el_cmv_c1c2rail_2011NElv2_NONPOINT_20141108_07sep2016_v2 2023el_MARAMA_cmv_c1c2rail_2011NElv2_NONPOINT_20141108_07sep2016_v0 2023el_MARAMA_rail_c1c2rail_2011NElv2_NONPOINT_20141108_07sep2016_v0 2023el_rail_c1c2rail_2011NElv2_NONPOINT_20141108_07sep2016_v2 t_2023el_c1c2_offshore_2011NElv2_NONPOINT_20141108_07sep2016_v0 Prepared by EPA, uploaded to MARAMA EMF on September 9, 2016.

- 2028
 - o Alpha 2:

MARAMA_Alpha_2028_c1c2_offshore_2011NElv2_NONPOINT_20141108_11nov2014_v0 MARAMA_Alpha_2028_c1c2rail_2011NElv2_NONPOINT_20141108_11nov2014_v1 Prepared by MARAMA, uploaded to MARAMA EMF on August 19, 2015 and August 20, 2015, respectively.

o Gamma:

2028el_cmv_from_c1c2rail_2011NEIv2_NONPOINT_20141108_17nov2016_v1 MARAMA_2028el_cmv_c1c2rail_2011NEIv2_NONPOINT_20141108_17nov2016_v1 2028el_rail_c1c2rail_from_2011NEIv2_NONPOINT_20141108_17nov2016_v1 MARAMA_2028el_rail_c1c2rail_2011NEIv2_NONPOINT_20141108_17nov2016_v1 2028el_c1c2_offshore_from_2011NEIv2_NONPOINT_20141108_17nov2016_v0 Prepared by EPA, not uploaded to EMF, but available on EPA FTP site.

C3 Marine

• 2011

	0	Alpha:
		c3marine_2011NElv2_NONPOINT_20141108_11nov2014_v0.csv
		c3_offshore_2011NEIv2_NONPOINT_20141108_11no v2014_v0.csv
		Prepared by EPA, uploaded to MARAMA EMF on November 13, 2014.
	0	Alpha 2, Beta, Beta 2:
		c3marine_2011NElv2_NONPOINT_20141108_14nov2014_v1.csv
		eca_imo_nonUS_nonCANADA_caps_vochaps_2011_16jun2015_v1_orl_MARAMA.txt
		Prepared by EPA, uploaded to MARAMA EMF on January 2, 2015 and June 30, 2015 respectively.
	0	Gamma:
		c3marine_2011NEIv2_NONPOIN1_20141108_02sep2016_v2.csv
		eca_imo_nonUS_nonCANADA_caps_vochaps_2011_16jun2015_v1_orl_MARAMA.txt
		Prepared by EPA, uploaded to MARAMA EMF on September 9, 2016 and June 30, 2015 respectively.
•	2017	
	0	Beld, Beld Z. 2017 NONDOINT comaring 28iun2016
		2017_INDIVPOINT_CSITURITIE_20JUII2010 2017ah fram asa ima nanUS nanCANADA sans yachans 2011 25fah2015 y0 arl MARAMA tyt
		Propaged by MARAMA and ERA respectively, upleaded to MARAMA EME on June 22, 2016 and August 9, 2016
		respectively
	2019	Tespectively.
•	2010	Alnha Alnha 2.
	0	MARAMA Alpha 2018 c3marine 2011NElv2 NONPOINT 20141108 14nov2014 v1 csv
		eca imo nonLIS nonCANADA cans vochans 2018 04dec2013 v0
		Prepared by MARAMA and EPA, respectively, uploaded to MARAMA EME on June 24, 2015 and December 18.
		2013. respectively.
•	2020	
	0	Gamma:
		2020 MARAMA c3marine 2011NEIv2 NONPOINT 20141108 14nov2014 v1.csv
		c3marine_2011NEIv2_NONPOINT_20141108_02sep2016_v2
		Prepared by EPA, uploaded to MARAMA EMF on November 22, 2017 and November 30, 2016 respectively.
•	2023	
	0	Gamma:
		2023el_c3marine_2011NEIv2_NONPOINT_20141108_09sep2016_v2
		2023el_MARAMA_c3marine_2011NEIv2_NONPOINT_20141108_07sep2016_v0
		Prepared by EPA, uploaded to MARAMA EMF on September 9, 2016 and June 13, 2017 respectively.
•	2028	
	0	Alpha 2:
		MARAMA_Alpha_2028_c3marine_2011NElv2_NONPOINT_20141108_14nov2014_v1
		eca_imo_nonUS_nonCANADA_caps_haps_2025_07mar2014_v0
		Prepared by MARAMA and EPA, respectively, uploaded to MARAMA EMF on August 20, 2015 and November 20,
		2014, respectively.
	0	Gamma:
		2028el_c3marine_2011NElv2_NONPOINT_20141108_29nov2016_v2
		MARAMA_2028el_c3marine_2011NElv2_NONPOINT_20141108_17nov2016_v1
		Prepared by EPA, not uploaded to EMF, but available on EPA FTP site.
ΕR	TAC EG	Js
•	2011	
	0	Alpha, Alpha 2:
		 Annual Files:OTC_2011_ERTACEGUv23_150227_MENHVTMARICTNYNJDEPAMDDCVA.csv
		SESARM_2011_ERTACEGUv23_150227_WVNCSCGAKYTNALMS.csv
		LADCO_2011_ERTACEGUv23_150227_MIOHINILWIMN.csv
		CenSARA_2011_ERTACEGUv23_150227_TXOKNEKSIAARLAMO.csv
		Prepared by ERTAC and OTC, uploaded to MARAMA EMF on February 27, 2015.
		 Hourly Files:
		Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF system due to size

Prepared by
 Beta, Beta 2, Gamma:

Annual Files:OTC_2011_ERTACEGUv25_20160607_MENHVTMARICTNYNJDEPAMDDCVA.csv SESARM_2011_ERTACEGUv25_20160607_WVNCSCGAKYTNALMS.csv •

LADCO_2011_ERTACEGUv25_20160607_MIOHINILWIMN.csv CenSARA_2011_ERTACEGUv25_20160607_TXOKNEKSIAARLAMO.csv Prepared by ERTAC and OTC, uploaded to MARAMA EMF on June 7, 2016. Hourly Files:

- Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF system due to size.
- 2017
 - o Beta:
 - Annual Files:OTC_2017_ERTACEGUv25_20160707_MENHVTMARICTNYNJDEPAMDDCVA.csv SESARM_2017_ERTACEGUv25_20160707_WVNCSCGAFLKYTNALMS_2018.csv LADCO_2017_ERTACEGUv25_20160707_MIOHINILWIMN.csv CenSARA_2017_ERTACEGUv25_20160707_TXOKNEKSIAARLAMO.csv Prepared by ERTAC and OTC, uploaded to MARAMA EMF on July 13, 2016.
 - Hourly Files:
 - Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF system due to size.
 - o Beta 2:
 - Annual Files: OTC_2017_ERTACEGUv25L2_20160919_MENHVTMARICTNYNJDEPAMDDCVA SESARM_2017_ERTACEGUv25L2_20160919_WVNCSCGAKYTNALMS LADCO_2017_ERTACEGUv25L2_20160919_MIOHINILWIMN CENSARA_2017_ERTACEGUv25L2_20160919_TXOKNEKSIAARLAMO Prepared by ERTAC and OTC, uploaded to MARAMA EMF on September 22, 2016.
 Hourly Files:
 - Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF system due to size.
- 2018

0

- Alpha, Alpha 2:
 - Annual Files:

OTC_2018_ERTACEGUv23_150227_MENHVTMARICTNYNJDEPAMDDCVA.csv SESARM_2018_ERTACEGUv23_150227_WVNCSCGAFLKYTNALMS_2018.csv LADCO_2018_ERTACEGUv23_150227_MIOHINILWIMN.csv CenSARA_2018_ERTACEGUv23_150227_TXOKNEKSIAARLAMO.csv Prepared by ERTAC and OTC, uploaded to MARAMA EMF on April 2, 2015.

 Hourly Files: Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF system due to size.

• 2020

- o Gamma:
 - Annual Files: LADCO_2020_ERTACEGUv27_20180110_MIOHINILWIMN OTC_2020_ERTACEGUv27_20180110_MENHVTMARICTNYNJDEPAMDDCVA SESARM_2020_ERTACEGUv27_20180110_WVNCSCGAKYTNALMS CenSARA_2020_ERTACEGUv27_20180110_TXOKNEKSIAARLAMO Prepared by ERTAC and OTC, uploaded to MARAMA EMF on January 11, 2018.
 - Hourly Files: Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF system due to size.
- 2023

o Gamma:

 Annual Files: CENSARA_2023_ERTACEGUv27_20170918_TXOKNEKSIAARLAMO LADCO_2023_ERTACEGUv27_20170918_MIOHINILWIMN OTC_2023_ERTACEGUv27_20170918_MENHVTMARICTNYNJDEPAMDDCVA SESARM_2023_ERTACEGUv27_20170918_WVNCSCGAKYTNALMS Prepared by ERTAC and OTC, uploaded to MARAMA EMF on September 26, 2017.
 Hourly Files:

- Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF system due to size.
- 2028 o Alpha 2:
 - Annual Files:
 - OTC_2028_ERTACEGUv23_150611_MENHVTMARICTNYNJDEPAMDDCVA.csv SESARM_2028_ERTACEGUv23_150611_WVNCSCGAFLKYTNALMS.csv

LADCO_2028_ERTACEGUv23_150611_MIOHINILWIMN.csv CenSARA_2028_ERTACEGUv23_150611_TXOKNEKSIAARLAMO.csv Prepared by ERTAC and OTC, uploaded to MARAMA EMF on July 8, 2015.

- Hourly Files:
 - Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF system due to size.
- o Gamma:
 - Annual Files:
 - Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF.
 - Hourly Files: Prepared by ERTAC and OTC, not uploaded to the MARAMA EMF system due to size.

Non-EGU Point

0

- 2011
 - o Alpha, Alpha
 - 2:MARAMA_Alpha_ptnonipm_2011NElv2_POINT_20140913_revised_20141007_08oct2014_nf_v1_csv_23oct20 14_v0

Ethanol_plants_2011_OTAQ_17oct2014_v6.csv

Prepared by EPA and OTC, uploaded to MARAMA EMF on December 11, 2014 and November 13, 2014, respectively.

- Beta, Beta 2, Gamma:
- Annual Files:
 - ptnonipm_2011NEIv2_POINT_20140913_revised_20150115_09feb2015_v2_MARAMA.csv ethanol_plants_2011NEIv2_POINT_20141123_03feb2015_v1 Prepared by EPA and MARAMA, uploaded to MARAMA EMF on December 23, 2015 and February 3, 2015. respectively.
 - Hourly Files:

Prepared by MDE, not uploaded to the MARAMA EMF system due to size.

- 2017
 - o Beta, Beta 2:
 - Annual Files:
 - 2017_POINT_ptnonipm_25jul2016
 - Biodiesel_Plants_2018_ff10_11apr2013_v0.csv

MARAMA_Beta_2017_cement_newkilns_year_2018_from_ISIS2013_NEI2011v1_17mar2015_v2 2017eh_from_ethanol_plants_2011NEIv2_POINT_20141123_10mar2015_v0_MARAMA Prepared by MARAMA, uploaded to MARAMA EMF on July 25, 2016, February 20, 2014, September 14, 2015 and April 23, 2016 respectively.

- Hourly Files: Prepared by MDE, not uploaded to the MARAMA EMF system due to size.
- 2018
 - Alpha, Alpha 2:

MARAMA_Alpha_2018_MARAMA_Alpha_ptnonipm_2011NElv2_POINT_20140913_revised_20141007_08oct201 4_nf_v1_csv_23oct2014_v0_mar_v0_01feb2015_nf_v1 MARAMA_Alpha_2018_Ethanol_plants_2011_OTAQ_17oct2014_v6_csv_06nov2014_v0_v0_01feb2015_nf_v1 Prepared by MARAMA, uploaded to MARAMA EMF on February 1, 2015.

2020

- o Gamma:
 - Annual Files: 2020_POINT_PTNONIPM_22dec2017 Biodiesel_Plants_2018_ff10_11apr2013_v0.csv 2020_from_ethanol_plants_2011NEIv2_POINT_20dec2017_MARAMA 2023en_ptnonipm_new_units_state_comments_WIonly_09aug2017_v0 2014_Illinois_WV_new_sources_NODA_29aug2016_v2 2023_MARAMA_new_sources_2jun2017 Prepared by EPA and MARAMA, uploaded to MARAMA EMF on December 22, 2018, February 20, 2014, December 20, 2017, November 22, 2017, October 7, 2016, and June 2, 2017, respectively.
 Hourly Files: Comment_2020_performation
 - Gamma_2020_nonCAMD_EGUs_FF10_Hourly_SESARM_01192018.csv Gamma_2020_nonCAMD_EGUs_FF10_Hourly_LADCO_01192018.csv

Gamma_2020_nonCAMD_EGUs_FF10_Hourly_MANEVU+VA_01192018.csv Gamma_2020_nonCAMD_EGUs_FF10_Hourly_CENSARA_01192018.csv Prepared by MDE, uploaded to the MARAMA EMF on January 19, 201.

- 2023
 - o Gamma:
 - Annual Files:

2023_POINT_PTNONIPM_29may2017 Biodiesel_Plants_2018_ff10_11apr2013_v0.csv 2023el_from_ethanol_plants_2011NElv2_POINT_20141123_20sep2016_v0 2023en_ptnonipm_new_units_state_comments_WIonly_09aug2017_v0 2014_Illinois_WV_new_sources_NODA_29aug2016_v2 2023_MARAMA_new_sources_2jun2017 Prepared by EPA and MARAMA, uploaded to MARAMA EMF on June 2, 2017, February 20, 2016, October 7, 2016, November 22, 2017, October 7, 2016, and June 2, 2017, respectively. Hourly Files:

Gamma_2023_nonCAMD_EGUs_FF10_Hourly_LADCO_06072017.csv Gamma_2023_nonCAMD_EGUs_FF10_Hourly_SESARM_06072017.csv Gamma_2023_nonCAMD_EGUs_FF10_Hourly_MANEVU+VA_06072017.csv Gamma_2023_nonCAMD_EGUs_FF10_Hourly_CENSARA_06072017.csv Prepared by MDE, uploaded to the MARAMA EMF on June 8, 2017.

2028

o Alpha 2:

0

MARAMA_Alpha_2028_ptnonipm_2011NEIv2_POINT_20140913_revised_20141007_08oct2014_nf_v1 Biodiesel_Plants_2018_ff10_11apr2013_v0 cement_newkilns_year_2025_from_ISIS2013_NEI2011v1_30jan2015_v1 MARAMA_Alpha_2028_Ethanol_plants_2011_0TAQ_17oct2014_v6 The first file was prepared by MARAMA and the remainder by EPA, uploaded to MARAMA EMF on October 23, 2015, March 12, 2015, November 19, 2015, and August 21, 2015, respectively. Gamma: Annual Files:

HazeGamma2028_base__MARAMA_2028_ptnonipm_2011NEIv2_POINT_20140913_revised_2015011 5_mar_18nov2016_v3

HazeGamma2028_base__2023el_from_ptnonipm_2011NElv2_POINT_20140913_revised_20150115_2 0sep2016_v2

Biodiesel_Plants_2018_ff10_11apr2013_v0.csv

cement_newkilns_year_2025_from_ISIS2013_NEI2011v1_30jan2015_v1 2023el from ethanol plants 2011NEIv2 POINT 20141123 20sep2016 v0

- 2023en ptnonipm new units state comments WIonly 09aug2017 v0
- 2014 Illinois WV new sources NODA 29aug2016 v2
- 2023 MARAMA new sources 2jun2017

Prepared by EPA and OTC, uploaded to MARAMA EMF on April 4, 2018, April 4, 2018, February 20, 2014, March 12, 2015, October 7, 2016, November 22, 2017, October 7, 2016, and June 2, 2017, respectively.

 Hourly Files: HazeGamma_2028_nonCAMD_EGUs_FF10_Hourly_SESARM_04042018.csv.csv HazeGamma_2028_nonCAMD_EGUs_FF10_Hourly_MANEVU+VA_04042018.csv.csv HazeGamma_2028_nonCAMD_EGUs_FF10_Hourly_LADCO_04042018.csv.csv HazeGamma_2028_nonCAMD_EGUs_FF10_Hourly_CENSARA_04042018.csv.csv Prepared by OTC, uploaded to MARAMA EMF on April 5, 2018.

Non-ERTAC IPM EGUs

- 2011
 - Alpha, Alpha 2: MARAMA_Alpha_output_for_NEI_smallEGUpt_from_NEI_EGU_.csv Prepared by EPA and OTC, uploaded to MARAMA EMF on December 11, 2014.
 - Beta, Beta 2, Gamma:

- Annual Files:
 - ptnonERTAC_ipm_2011NEIv2_20160512.csv
 - Prepared by EPA and OTC, uploaded to MARAMA EMF on May 12, 2016.
- Hourly Files:
 - Prepared by MDE, not uploaded to the MARAMA EMF system due to size.
- 2017

0

- Beta, Beta 2:
 - Annual Files:
 - 2017_POINT_PTNONERTAC_IPM_20jun2016
 - Prepared by MARAMA, uploaded to MARAMA EMF on June 20, 2016.
 - Hourly Files:
 - Prepared by MDE, not uploaded to the MARAMA EMF system due to size.
- 2018
 - Alpha, Alpha 2:
 - MARAMA_Alpha_2018_MARAMA_Alpha_output_for_NEI_smallEGUpt_from_NEI_EGU__csv_v0_01feb2015_nf_ v1
 - Prepared by MARAMA, uploaded to MARAMA EMF on February 1, 2015.
- 2020
 - o Gamma:
 - Annual Files: 2020_ptnonERTAC_ipm_22dec2017
 Propared by MARAMA_uploaded to MARAMA_EME on Ea
 - Prepared by MARAMA, uploaded to MARAMA EMF on February 5, 2018. Hourly Files:
 - Gamma_2020_nonCAMD_EGUs_FF10_Hourly_SESARM_01192018.csv Gamma_2020_nonCAMD_EGUs_FF10_Hourly_LADCO_01192018.csv Gamma_2020_nonCAMD_EGUs_FF10_Hourly_MANEVU+VA_01192018.csv Gamma_2020_nonCAMD_EGUs_FF10_Hourly_CENSARA_01192018.csv Prepared by MDE, uploaded to MARAMA EMF on January 18, 2018.
- 2023
 - o Gamma:
 - Annual Files: 2023_POINT_PTNONERTAC_IPM_29may2017 Prepared by MARAMA, uploaded to MARAMA EMF on June 2, 2017.
 Hourly Files: Gamma_2023_nonCAMD_EGUs_FF10_Hourly_LADCO_06072017.csv Gamma_2023_nonCAMD_EGUs_FF10_Hourly_SESARM_06072017.csv Gamma_2023_nonCAMD_EGUs_FF10_Hourly_MANEVU+VA_06072017.csv

Gamma_2023_nonCAMD_EGUs_FF10_Hourly_CENSARA_06072017.csv Prepared by MDE, uploaded to MARAMA EMF on June 8, 2017.

- 2028
 - Alpha 2:
 - MARAMA_Alpha_2028_output_for_NEI_smallEGUpt_from_NEI_EGU_v0 Prepared by MARAMA, uploaded to MARAMA EMF on October 23, 2015.
 - o Gamma:
 - Annual Files:
 - 2023_POINT_PTNONERTAC_IPM_29may2017 Prepared by MARAMA, uploaded to MARAMA EMF on June 2, 2017.
 - Hourly Files: HazeGamma_2028_nonCAMD_EGUs_FF10_Hourly_SESARM_04042018.csv.csv HazeGamma_2028_nonCAMD_EGUs_FF10_Hourly_MANEVU+VA_04042018.csv.csv HazeGamma_2028_nonCAMD_EGUs_FF10_Hourly_LADCO_04042018.csv.csv HazeGamma_2028_nonCAMD_EGUs_FF10_Hourly_CENSARA_04042018.csv.csv Prepared by OTC, uploaded to MARAMA EMF on April 5, 2018.

NonPoint Oil & Gas

• 2011

	0	Alpha, Alpha 2, Beta, Beta 2: np_oilgas_2011NEIv2_NONPOINT_20141108_11nov2014_v0.csv Prepared by EPA, uploaded to MARAMA EMF on November 13, 2014.
	0	Alpha, Alpha 2, Beta, Beta 2: np_oilgas_2011NElv2_NONPOINT_14dec2015_v5 Prepared by EPA, uploaded to MARAMA EMF on December 29, 2015.
•	2017	
	0	Beta, Beta 2: 2017_NONPOINT_oilgas_15jul2016
	2010	Prepared by MARAMA, uploaded to MARAMA EMF on July 15, 2015.
•	2018	Alaba Alaba 2.
	0	MARAMA_Alpha_2018_np_oilgas_2011NElv2_NONPOINT_20141108_11nov2014_v0_csv_v0_21jan2015_nf_v1 Prepared by MARAMA, uploaded to MARAMA EMF on January 21, 2015.
•	2020	
	0	Gamma: 2020_MARAMA_np_oilgas_2011NElv2_NONPOINT_20141108_21dec2017 2020_nonMARAMA_np_oilgas_2011NElv2_NONPOINT_21dec2017 Prepared by MARAMA, uploaded to MARAMA EME on December 1, 2017 and December 21, 2017, respectively.
•	2023	
	0	Gamma:
		2023el_MARAMA_np_oilgas_2011NElv2_NONPOINT_20141108_mar_14sep2016_v1_MDPAVAWV
		2023en_np_0ligas_2011NEIV2_NONPOIN1_0/dug2017_V1
		202361_TCEQ_2014_TP_0Tgus_JT0_T000_1800g2017_V0 Prenared by EPA_unloaded to MARAMA EME on October 5-2, and 2, 2017, respectively
•	2028	
	0	Alpha 2:
		MARAMA_Alpha_2028_np_oilgas_2011NElv2_NONPOINT_20141108_11nov2014_v0
		Prepared by MARAMA, uploaded to MARAMA EMF on August 20, 2015.
	0	Gamma:
		2028el_np_oilgas_2011NElv2_NONPOINT_20141108_18nov2016_v1
		MARAMA_2028el_np_oilgas_2011NElv2_NONPOINT_20141108_18nov2016_v1
		2028eL_oklahoma_2011_np_oilgas_NODA_18nov2016_v0
		202861_2011_1CEQ_12XUS_011_90S_JJ10_18110V2010_V0 Prenared by EPA not unloaded to EME but available on EPA ETP site
Nο	nroad	
•	2011	
•	0	Alpha, Alpha 2:
		2011NElv1_nonroad_20130621_04sep2013_v4.csv
		Prepared by EPA, uploaded to MARAMA EMF on March 2, 2014.
	0	Beta, Beta 2, Gamma:
		2011NElv1_nonroad_20130621_17oct2014_v6_MARAMA
		Prepared by EPA, uploaded to MARAMA EMF on January 8, 2016.
•	2017	
•	2017	Reta Reta 2:
	0	2017 nonroad ff10 adjusted from 2018 noCalif 23mar2015 v0 MARAMA
		Prepared by EPA, uploaded to MARAMA EMF on June 9, 2016.
•	2018	
	0	Alpha, Alpha 2:
		2018_nonroad_20130829_30oct2013_v2.csv
		Prepared by EPA, uploaded to MARAMA EMF on March 5, 2014.
•	2020	General
	0	Gamma: Annandix FE – 2020 Nonroad and Onroad County Symmetrics (not in EME)
•	2022	Appenaix ee – 2020 Nonroad and Onroad County Summaries (not in EMF)
•	2023	Gamma
	0	2023el nonroad ff10 NCD20160627 05oct2016 v3 part1

2023el_nonroad_ff10_NCD20160627_05oct2016_v3_part2 2023el_projection_SLT_nonroad_01feb2013_Texas_monthly_ff10_30aug2016_v0 Prepared by EPA, uploaded to MARAMA EMF on December 5, 2016, December 5, 2016, and September 9, 2016, respectively.

- 2028
 - Alpha 2:

0

2028_from_NEI2025_nonroad_ff10_NCD20130831_23feb2015_v3_MARAMA Prepared by EPA, uploaded to MARAMA EMF on October 19, 2015. Gamma:

2028el_nonroad_ff10_NCD20160722_18nov2016_v3_part1.csv 2028el_nonroad_ff10_NCD20160722_18nov2016_v3_part2.csv 2028el_projection_SLT_nonroad_01feb2013_Texas_monthly_ff10_30aug2016_v0.csv Prepared by EPA, not uploaded to EMF, but available on EPA FTP site.

Onroad

- 2011
 - Alpha, Alpha 2: 2011eh_onroad_SMOKE_MOVES_MOVES2014_no_speciated_pm_MARAMA Prepared by EPA, uploaded to MARAMA EMF on October 6, 2015.
 - Beta, Beta 2: *MOVES2014a_ONROAD_EPA2011ek_FF10* Prepared by EPA, uploaded to MARAMA EMF on July 5, 2016.
 Gamma:
 - MOVES2014a_ONROAD_EPA2011el_FF10 Prepared by EPA, uploaded to MARAMA EMF on June 13, 2017

• 2017

- Beta, Beta 2: MOVES2014a_ONROAD_EPA2017ek_FF10 Prepared by EPA, uploaded to MARAMA EMF on July 5, 2016.
- 2018

 Alpha, Alpha 2: 2018eh_onroad_SMOKE_MOVES_MOVES2014_no_speciated_pm_MARAMA
 Prepared by EPA, uploaded to MARAMA EMF on October 6, 2015.

- 2020
 - Gamma: Appendix EE – 2020 Nonroad and Onroad County Summaries (not in EMF)
- 2023
 - o Gamma:
 - 2023el_nonroad_ff10_NCD20160627_05oct2016_v3_part1 2023el_nonroad_ff10_NCD20160627_05oct2016_v3_part2 2023el_projection_SLT_nonroad_01feb2013_Texas_monthly_ff10_30aug2016_v0_2023 MOVES2014a_ONROAD_EPA2023el_FF10 Prepared by EPA, uploaded to MARAMA EMF on January 19, 2017.
- 2028
 - Alpha 2:

2028_from_2025eh_onroad_SMOKE_MOVES_MOVES2014_no_speciated_pm_v0_MARAMA Prepared by EPA, uploaded to MARAMA EMF on October 22, 2015.

o Gamma:

2028el_onroad_SMOKE_MOVES_MOVES2014a_forOTAQ_21nov2016_v0_part1.csv 2028el_onroad_SMOKE_MOVES_MOVES2014a_forOTAQ_21nov2016_v0_part2.csv Prepared by EPA, not uploaded to EMF, but available on EPA FTP site.

Point Oil & Gas

- 2011
 - Alpha, Alpha 2: *othpt_offshore_oil_2011NElv2_POINT_20140913_16sep2014_v0.csv*

pt_oilgas_2011NElv2_POINT_20140913_17oct2014_v2.csv Prepared by EPA, uploaded to MARAMA EMF on November 5, 2014.

Beta, Beta 2, Gamma: 0 othpt offshore oil 2011NEIv2 POINT 20140913 16sep2014 v0.csv pt oilgas 2011NEIv2 POINT 20140913 03feb2015 v4 Prepared by EPA, uploaded to MARAMA EMF on November 5, 2014 and February 3, 2015, respectively.

2017 .

Beta, Beta 2: 0 Othpt offshore oil 2011NEIv2 POINT 20140913 16sep2014 v0.csv 2017 POINT oilgas 23jul2016 Prepared by MARAMA, uploaded to MARAMA EMF on July 23, 2016, July 23, 2016, and November 5, 2014, respectively.

2018

Alpha, Alpha 2: 0

MARAMA Alpha 2018 othpt offshore oil 2011NEIv2 POINT 20140913 16sep2014 v0 csv v0 01feb2015 v0 MARAMA Alpha 2018 pt oilgas 2011NEIv2 POINT 20140913 17oct2014 v2 csv v0 01feb2015 nf v1 Prepared by MARAMA, uploaded to MARAMA EMF on February 1, 2015.

2020

0 Gamma:

2020 MARAMA pt oilgas 2011NEIv2 POINT 20140913 22dec2017 2020 nonMARAMA pt oilgas 2011NElv2 POINT 20140913 22dec2017 Prepared by MARAMA, uploaded to MARAMA EMF on February 3, 2018 and January 2, 2018, respectively.

2023

- 0 Gamma: 2023en MARAMA pt oilgas 2011NElv2 POINT 21aug2017 v0 2023en pt oilgas 2011NEIv2 POINT 21aug2017 v2 Prepared by MARAMA, uploaded to MARAMA EMF on December 12, 2017 and September 29, 2017, respectively.
- 2028
 - Alpha 2: 0

MARAMA Alpha 2028 othpt offshore oil 2011NEIv2 POINT 20140913 16sep2014 v0.csv MARAMA Alpha 2028 pt oilgas 2011NElv2 POINT 20140913 17oct2014 v2 Prepared by MARAMA, uploaded to MARAMA EMF on August 18, 2015 and October 23, 2015, respectively. Gamma:

0

2028el pt oilgas 2011NElv2 POINT 20140913 02dec2016 v1 MARAMA 2028el pt oilaas 2011NElv2 POINT 20140913 mar 21nov2016 v1 Prepared by EPA, not uploaded to EMF, but available on EPA FTP site.

Prescribed Burn

- All Years
 - Alpha, Alpha 2, Beta, Beta 2, Gamma: 0 ptfire jan 2011v2 prescribed 16jan2015 v0 ptfire_feb_2011v2_prescribed_16jan2015_v0 ptfire_mar_2011v2_prescribed_16jan2015_v0 ptfire apr 2011v2 prescribed 16jan2015 v0 ptfire may 2011v2 prescribed 16jan2015 v0 ptfire jun 2011v2 prescribed 16jan2015 v0 ptfire jul 2011v2 prescribed 16jan2015 v0 ptfire aug 2011v2 prescribed 16jan2015 v0 ptfire_sep_2011v2_prescribed_16jan2015_v0 ptfire oct 2011v2 prescribed 16jan2015 v0 ptfire nov 2011v2 prescribed 16jan2015 v0 ptfire dec 2011v2 prescribed 16jan2015 v0 Prepared by EPA, uploaded to MARAMA EMF on January 15, 2015.

Refueling

•

•	2011	
	0	Alpha, Alpha 2:
		refueling refueling 2011NEIv2 POINT 20140913 23sep2014 v0.csv
		refueling 2011NEIv2 NONPOINT 20141108 11nov2014 v0.csv
		Prepared by EPA, uploaded to MARAMA EMF on November 6, 2014 and November 13, 2014, respectively.
	0	Reta Reta 2 Gamma:
	0	refueling 2011NEW2 POINT 20140013 04der2014 v2
		refueling_2011NEIv2_rONT_20140515_040622014_02
		rejuering_zorink.ivz_NOWFORV_20141106_111072014_V0.530
		Prepared by EPA, uploaded to MARAMA EMP on February 3, 2015 and November 13, 2014, respectively.
•	2017	
	0	Beta, Beta 2:
		2017_POINT_refueling_15jul2016
		2017_NONPOINT_refueling_20jun2016
		Prepared by MARAMA, uploaded to MARAMA EMF on July 15, 2016 and June 20, 2016, respectively.
•	2018	
	0	Alpha, Alpha 2:
		MARAMA Alpha 2018 refueling refueling 2011NEIv2 POINT 20140913 23sep2014 v0 csv v0 02feb2015 nf
		v1
		Prepared by MARAMA, uploaded to MARAMA EME on February 1, 2015 and January 5, 2015, respectively.
•	2020	
		Gamma:
	Ũ	2020 refueling 2011NFIv2 POINT 20140913 04dec2014 v2 14sen2017
		2020 refueling 2011NEVE2 NONPOINT 11pg/2014 v0 12cp2017
		Dropard by MARAMA uploaded to MARAMA EME on Sostember 12, 2017
	2022	riepared by Makalvia, uploaded to Makalvia Livir on September 15, 2017.
•	2023	Comme
	0	
		2023ei_from_refueling_2011NEIv2_POIN1_20140913_20sep2016_V1
		2023el_MARAMA_from_refueling_2011NEIv2_POINT_20140913_15sep2016_v1
		2023el_from_refueling_2011NElv2_NONPOINT_20141108_14sep2016_v1
		2023el_MARAMA_from_refueling_2011NElv2_NONPOINT_20141108_mar_13sep2016_v1
		Prepared by EPA, uploaded to MARAMA EMF on October 7, 2016.
•	2028	
	0	Alpha 2:
		MARAMA_Alpha_2028_refueling_refueling_2011NElv2_POINT_20140913_23sep2014_v0
		MARAMA_Alpha_2028_refueling_2011NElv2_NONPOINT_20141108_11nov2014_v0
		Prepared by MARAMA, uploaded to MARAMA EMF on October 23, 2015 and August 20, 2015, respectively.
	0	Gamma:
		2023el from refueling 2011NEIv2 POINT 20140913 20sep2016 v1
		MARAMA 2028el refueling 2011NEIv2 POINT 20140913 18nov2016 v1
		2023el from refueling 2011NFlv2 NONPOINT 20141108 14sep2016 v1
		MARAMA 2028el refueling 2011NEW2 NONPOINT 20141108 21nov2016 v1
		Prenared by EPA most files not unloaded to EME (files listed in other years are), but available on EPA ETP site
		repared by Erry most meshot aploaded to Erri (meshoted in other years are), but available of ErATT offer.
ĸe	sidentia	al wood compustion

• 2011

- Alpha, Alpha 2: 0 rwc_2011NEIv2_NONPOINT_20141108_11nov2014_v0.csv Prepared by EPA, uploaded to MARAMA EMF on November 13, 2014. 0 Beta, Beta 2: rwc_2011NElv2_NONPOINT_20141108_24nov2014_v3 Prepared by EPA, uploaded to MARAMA EMF on January 5, 2015.
- 2017 ٠
 - Beta, Beta 2: 0 2017_NONPOINT_RWC_20jun2016 Prepared by MARAMA, uploaded to MARAMA EMF on June 20, 2016.

• 2018

0

- Alpha, Alpha 2: MARAMA_Alpha_2018_rwc_2011NElv2_NONPOINT_20141108_11nov2014_v0_csv_v0_21jan2015_nf_v1 Prepared by MARAMA, uploaded to MARAMA EMF on January 21, 2015.
- 2020
 - o Gamma:

2020_MARAMA_rwc_2011NElv2_NONPOINT_20141108_24nov2014_v3 Prepared by MARAMA, uploaded to MARAMA EMF on November 22, 2017. Note:New York DEC interpolated gridded emissions between 2017 and 2023 for other states in the domain

- 2023
 - o Gamma:

2023el_rwc_2011NEIv2_NONPOINT_20141108_080856104_07sep2016_v1 2023el_rwc_MARAMA_2011NEIv2_NONPOINT_20141108_07sep2016_v0 Prepared by EPA, uploaded to MARAMA EMF on September 9, 2016.

• 2028

0

- Alpha 2: MARAMA_Alpha_2028_rwc_2011NElv2_NONPOINT_20141108_11nov2014_v0 Prepared by MARAMA, uploaded to MARAMA EMF on August 20, 2015.
- Gamma: 2028el_rwc_from_2011NEIv2_NONPOINT_20141108_17nov2016_v1 MARAMA_2028el_rwc_2011NEIv2_NONPOINT_20141108_17nov2016_v1 Prepared by EPA, not uploaded to EMF, but available on EPA FTP site.

Wild Fires

- All Years
 - Alpha, Alpha 2: 0 ptfire_jan_2011v2_wild_16jan2015_v0 ptfire feb 2011v2 wild 16jan2015 v0 ptfire_mar_2011v2_wild_16jan2015_v0 ptfire apr 2011v2 wild 16jan2015 v0 ptfire may 2011v2 wild 16jan2015 v0 ptfire_jun_2011v2_wild_16jan2015_v0 ptfire_jul_2011v2_wild_16jan2015_v0 ptfire_aug_2011v2_wild_16jan2015_v0 ptfire_sep_2011v2_wild_16jan2015_v0 ptfire oct 2011v2 wild 16jan2015 v0 ptfire_nov_2011v2_wild_16jan2015 v0 ptfire_dec_2011v2_wild_16jan2015 v0 Prepared by EPA, uploaded to MARAMA EMF on January 15, 2015. Beta, Beta 2, Gamma: 0
 - ptfire_jan_2011v2_wild_16jan2015_v0
 ptfire_feb_2011v2_wild_16jan2015_v0
 ptfire_mar_2011v2_wild_16jan2015_v0
 ptfire_apr_2011v2_wild_16jan2015_v0
 ptfire_may_2011v2_wild_16jan2015_v0_MARAMA
 ptfire_jun_2011v2_wild_16jan2015_v0_MARAMA
 ptfire_jul_2011v2_wild_16jan2015_v0
 ptfire_aug_2011v2_wild_16jan2015_v0
 ptfire_sep_2011v2_wild_16jan2015_v0
 ptfire_oct_2011v2_wild_16jan2015_v0
 ptfire_dec_2011v2_wild_16jan2015_v0
 Prepared by EPA and MARAMA, uploaded to MARAMA EMF on January 15, 2015, except the May and June files
 uploaded March 8, 2016.

Appendix C. List of Air Quality Monitors in OTC Modeling Domain

	State	County	AQS Code	Site	Latitude	Longitude
OTR	СТ	Fairfield	90010017	Greenwich Point Park	41.003613	-73.584999
			90011123	Western Conn State Univ	41.399166	-73.4431
			90013007	Stratford	41.1525	-73.103104
			90019003	Sherwood Island Connector	41.118332	-73.3367
		Hartford	90031003	McAuliffe Park	41 784721	-72 631699
		Litchfield	90050005	Mohawk Mt-Cornwall	41 821342	-73 297302
		Middlesey	90070007	(blank)	41.021342 A1 552223	-72 629997
		Now Haven	0000007	Criccuolo Dark Now Haven	41 201200	72.023337
		New Haven	90090027		41.301399	-72.902901
			90099002		41.200834	-72.550003
		New London	90110124	Fort Griswold Park	41.353619	-72.078796
		Iolland	90131001	(blank)	41.976391	-72.3881
		(blank)	90110008		41.317223	-72.065002
	DC	District of Columbia	110010025	TAKOMA SCHOOL	38.583225	-77.121902
			110010041	RIVER TERRACE	38.897221	-76.952797
			110010043	MCMILLAN PAMS	38.921848	-77.013199
	DE	Kent	100010002	PROPERTY OF KILLENS POND STATE PARK; BEH	38.984749	-75.555199
		New Castle	100031007	(blank)	39.551109	-75.730797
			100031010	OPEN FIELD	39.817223	-75.563904
			100031013	BELLEVUE STATE PARK. FIELD IN SE PORTION	39.773888	-75.496399
		Sussex	100051002	Seaford Shipley State Service Center	38 644478	-75 612701
			100051003	SPM SITE NEAR UD ACID RAIN/MERCURY COU	38 779198	-75 162697
		(blank)	100031003	Bellefonte River Road Park	39 761112	-75 /91898
		(blank)	100032003		20 720//5	-75 558008
		Daractable	200032004		41.075902	70.022508
	IVIA	Bailistable	250010002		41.975605	-70.0233398
		Berkshire	250034002		42.030081	-/3.10/39/
		Bristol	250051002	LERUY WOOD SCHOOL	41.633278	-70.879204
		Dukes	250070001	1 HERRING CREEK RD, AQUINNAH (WAMPANOAG	41.330467	-70.785202
		Essex	250092006	LYNN WATER TREATMENT PLANT	42.474644	-70.970802
			250094005	Newbury-B	42.814474	-70.817936
			250095005	CONSENTINO SCHOOL.	42.770836	-71.102303
		Hampden	250130008	WESTOVER AFB	42.194382	-72.555099
		Hampshire	250150103	AMHERST	42.400578	-72.523102
			250154002	QUABBIN RES	42.298492	-72.334099
		Middlesex	250170009	USEPA REGION 1 LAB	42.626678	-71.362099
			250171102	inactive military resv 680 hudson rd sud	42.413574	-71.482803
		Norfolk	250213003	BLUE HILL OBSERVATORY	42.211773	-71.113998
		Suffolk	250250041	BOSTON LONG ISLAND	42.317371	-70,968399
			250250042	DUDLEY SQUARE ROXBURY	42.329498	-71.082603
		Worcester	250270015	WORCESTER AIRPORT	42 274319	-71 875504
		in on desite.	250270024	LIXBRIDGE	12 099697	-71 6194
		(blank)	250094004	SITE LOCATED OFF PARKING LOT 2	42 790268	-70 808296
	MD		240020014	Davidsonville	28 0025	-76 652000
		Paltimoro	240050014	Davidsonvine	20 462025	76 621202
		Baltinore	240051007	Facor	20.210822	70.031302
			240053001	Essex	39.310833	-70.474403
		Baltimore (City)	245100054	Fulley	39.328892	-70.552498
		Calvert	240090011	Calvert	38.536/2	-76.617203
		Carroll	240130001	South Carroll	39.444168	-77.041702
		Cecil	240150003	Fair Hill Natural Resource Management Ar	39.701111	-75.860001
		Charles	240170010	Southern Maryland	38.504166	-/6.81189/
		Dorchester	240199991	Blackwater NWR	38.445	-76.1114
		Frederick	240210037	Frederick Airport	39.42276	-77.375198
		Garrett	240230002	Piney Run	39.705952	-79.012001
		Harford	240251001	Edgewood	39.41	-76.2967
			240259001	Aldino	39.563332	-76.203903
		Kent	240290002	Millington	39.305199	-75.797203
		Montgomery	240313001	Rockville	39.114445	-77.106903
		Prince George's	240330030	HU-Beltsville	39.055279	-76.878304
			240338003	PG Equestrian Center	38.811939	-76.744202
			240339991	Beltsville	39.0284	-76.8171
		Washington	240430009	Hagerstown	39.565582	-77.721603
		(blank)	240030019	FT MEADE LAT/LONG POINT IS OF THE SAMPLI	39.101112	-76.729401
			240330002	LAT/LONG POINT IS OF SAMPLING INLET	39.02	-76.827797
	MF	Androscoggin	230010014	DURHAM FIRE STATION	43 974621	-70 124603
		Cumberland	230052003	CETL - Cane Elizabeth Two Lights (State	43 561043	-70 207298
		Hancock	230090102	TOP OF CADILLAC MTN (FENCED ENCLOSURE)	44 351696	-68 226997
			230090102	MCEARLAND HILL Air Pollutant Recearch Si	44 3770/18	-68 260902
		Kannabac	220112005	Gardiner Dray Street School (CDSS)	11 220621	-60 785004
		KNO	230112003	Marchall Doint Lighthouse	44.230021	-03.763004
		Oxford	230130004	(hlank)	43.31/333	-03.200337
		Caradahaa	2301/3001		44.230923	-70.00003
		Sagananor	230230006	DOWDOINMAIN, WERKTWIEETING BAY, BROWN'S PT	44.005001	-09.82//9/

State	County	AQS Code	Site	Latitude	Longitude
	Washington	230290019	Harbor Masters Office; Jonesport Public	44.531906	-67.595901
	C	230290032	(blank)	44 963634	-67 060699
	Vork	220210028	WRED - West Buxton (Hollis) Fire Departm	12 656765	-70 629097
	TOIK	250510058	werd - west buxton (nonis) rife Departin	43.030703	-70.029097
		230310040	SBP - Shapleigh Ball Park	43.58889	-70.877296
		230312002	KPW - Kennebunkport Parson'd Way	43.343166	-70.471001
	(blank)	230031100	MICMAC HEALTH DEPARTMENT	46.69643	-68.032997
		230050027	SHELTER IN PARKING LOT OF INTERSECTION O	43 662373	-70 2649
		230030027		44 422072	68 805 702
		230090301		44.423073	-08.805702
		230194008	WLBZ TV Transmitter Building - Summit of	44.735977	-68.670799
		230230004		43.793568	-69.731796
		230313002	NO INFORMATION AT THIS TIME	43.083332	-70.75
	Dellanon	220012004		42 566112	71 406200
INFI	векпар	330012004	FIELD OFFICE ON THE GROUNDS OF THE FORME	43.500113	-71.496399
	Cheshire	330050007	WATER STREET	42.930473	-/2.2/24
	Coos	330074001	(blank)	44.270168	-71.303802
		330074002	CAMP DODGE, GREENS GRANT	44.308167	-71.217697
	Grafton	330090010	LEBANON AIRPORT ROAD	43 629612	-72 309601
	Hillsborough	220111011		13 719663	71 5224
	HIIISDOLOUGII	330111011		42.710002	-71.3224
		330115001	MILLER STATE PARK	42.861752	-71.878403
	Merrimack	330131007	HAZEN DRIVE	43.218498	-71.514503
	Rockingham	330150014	PORTSMOUTH - PEIRCE ISLAND	43.075333	-70,748001
		220150016		12 045277	70 712700
		330150010	SEACOAST SCIENCE CENTER	43.043277	-70.713733
		330150018	Londonderry-Moose Hill	42.862536	-71.380172
	(blank)	330074003	MONITOR LOCATED IN THE GATEHOUSE FOR THE	45.051109	-71.391899
		330110020	PEARL ST MUNICIPAL PARKING LOT	42.995777	-71.462502
		330190003		13 36/1/15	-72 338303
	A + + + -	330130005	Deinenstine	-3.30-4-43	72.330303
LN1	Atlantic	340010006	Brigantine	39.46487	-74.4487
	Bergen	340030006	Leonia	40.870438	-73.991997
	Camden	340071001	Ancora State Hospital	39.68425	-74.861504
	Cumberland	340110007	Millville	39 422272	-75 0252
	Facey	240120002	Newark Firebouse	40 720080	74 102002
	ESSEX	340130003	Newark - Firenouse	40.720989	-74.192902
	Gloucester	340150002	Clarksboro	39.800339	-75.212097
	Hudson	340170006	Bayonne	40.67025	-74.126099
	Hunterdon	340190001	Flemington	40.515263	-74.806702
	Mercer	340210005	Rider I Iniversity	10 283092	-74 742599
	Wiereer	340210005	Wash Grossing	40.203032	74.742333
		340219991	wash crossing	40.3125	-74.8729
	Middlesex	340230011	Rutgers University	40.462181	-74.429398
	Monmouth	340250005	Monmouth University	40.277645	-74.005096
	Morris	340273001	Chester	40,787628	-74.6763
	Ocean	340290006	Colliers Mills	40.064831	-74 444099
	Deserie	340230000	Demons	40.004631	-74.444033
	Passall	340315001	Ramapu	41.058017	-74.255501
	Warren	340410007	Columbia Site	40.924606	-75.067825
	(blank)	340010005	NACOTE CREEK RESEARCH STATION	39.530254	-74.460297
		340030005	TEANECK	40.898579	-74.0299
		340070003	CAMDENLAB	39 923042	-75 097603
NI1/	A 11	340070003		42 000752	73.057005
INY	Albany	360010012	LOUDONVILLE	42.680752	-73.757301
	Bronx	360050133	PFIZER LAB SITE	40.867901	-73.878098
	Chautauqua	360130006	DUNKIRK	42.49963	-79.318802
		360130011	WESTEIFID	42 29071	-79 5896
	Chamaung	200150002	FINIDA	42 110059	76,8022
1		300130003		42.110958	-70.8022
	Dutchess	360270007	MILLBROOK	41.785549	-73.741402
	Erie	360290002	AMHERST	42.993279	-78.7715
	Essex	360310002	WHITEFACE SUMMIT	88.732162	-147.806198
		360310003	WHITEFACE BASE	44 393082	-73 858902
	Llomilton	300310005		42.44057	73.030302
	Hamilton	360410005	PISECO LAKE	43.44957	-74.510290
	Jefferson	360450002	PERCH RIVER	44.087471	-75.973198
	Madison	360530006	CAMP GEORGETOWN	42.730461	-75.784401
	New York	360610135	CCNY	40 819759	-73 948303
	Niegoro	200021000	MIDDLEBORT	42 222962	79 479907
	Nidgara	360631006	MIDDLEPORT	43.223802	-/8.4/889/
	Oneida	360650004	CAMDEN	43.302681	-75.719803
	Onondaga	360671015	EAST SYRACUSE	43.052349	-76.059196
	Orange	360715001	VALLEY CENTRAL HIGH SCHOOL	41 52375	-74 215302
	Oswogo	260750002	ELITON	12 20/270	76 462202
	Oswego	360750003	FULION	43.284279	-70.403203
	Putnam	360790005	MINNHAM	41.455891	-/3./09801
	Queens	360810124	Queens College 2	40.736141	-73.821503
	Rensselaer	360830004	GRAFTON STATE PARK	42.781891	-73.4636
	Bichmond	360850067	SUSAN WAGNER HS	40 596642	-74 175709
		300030007		40.330042	-/4.123230
	Rockland	360870005	Rockland County	41.182079	-/4.028198
	Saratoga	360910004	STILLWATER	43.012089	-73.648903
	Steuben	361010003	PINNACLE STATE PARK	42.091419	-77,209801
	Suffelk	261020003	BARYLON	10 745200	-72 /10107
	SUITOIK	301030002	DADILUN	40.745289	-/3.41919/
		361030004	RIVERHEAD	40.960781	-72.712402
		361030009	HOLTSVILLE	81.655982	-146.115006
	Liister	361111005	BELLEAYRE MOUNTAIN	42 14/032	-74 494301
		301111003		42.234032	77.757501
1	wayne	361173001	WILLIAMSON	43.230862	-//.1/1402

State	County	AQS Code	Site	Latitude	Longitude
	Westchester	361192004	WHITE PLAINS	41.051922	-73.763702
	(blank)	360050110	15.52	40 816181	-73 902
	(blank)	360337003	V001	40.010101	-74 695
		360430005		44.580570	74.095
		360430005		43.08578	-74.985397
		360551007	ROCHESTER 2	43.146179	-77.548203
		360810098	COLLEGE POINT POST OFFICE	40.784199	-73.847603
		360930003	SCHENECTADY	42.799011	-73.938904
PA	Allegheny	420030008	Lawrenceville	40.46542	-79.9608
		420030010	LAT/LON IS APPROXIMATE LOCATION OF SCIEN	40.445576	-80.016197
		420030067	South Eavette	40 375645	-80 169899
		420031005	Harrison	40.573045	-79 729401
	. .	420031003		40.013343	-73.723401
	Armstrong	420050001	LAT/LON IS CENTER OF TRAILER	40.814182	-79.564697
	Beaver	420070002	(blank)	40.562519	-80.503899
		420070005	DRIVEWAY TO BAKEY RESIDENCE	40.684723	-80.359703
		420070014	(blank)	40.747795	-80.316399
	Berks	420110006	Kutztown	40.51408	-75.789703
		420110011	Reading Airport	40 38335	-75 968597
	Blair	420120801	(blank)	40 525278	-78 270796
	Diali	420130801		40.333278	-78.370790
	BUCKS	420170012	A420170012LAT/LONG POINT IS OF SAMPLING	40.107224	-74.882202
	Cambria	420210011	(blank)	40.309723	-78.915001
	Centre	420270100	LAT/LON=POINT SW CORNER OF TRAILER	40.81139	-77.876999
		420279991	Penn State	40.7208	-77.9319
	Chester	420290100	CHESTER COUNTY TRANSPORT SITE INTO PHILA	39.834461	-75.768204
	Clearfield	420334000	ΜΟΣΗΔΝΙΝΟΝ STATE FOREST	/1 1175	-78 526199
	Doumhin	420334000		40.24600	76.520155
	Dauphin	420430401	A420430401LAT/LON POINT IS AT CORNER OF	40.24699	-70.847
		420431100	A420431100LAT/LON POINT IS AT CORNER OF	40.272221	-76.681396
	Delaware	420450002	A420450002LAT/LON POINT IS OF CORNER OF	39.835556	-75.372498
	Erie	420490003	(blank)	42.14175	-80.038597
	Franklin	420550001	HIGH ELEVATION OZONE SITE	39.961109	-77.475601
	Greene	420590002	75 KM SSW OF PITTSBURGH RURAL SITE ON A	39.80933	-80.265701
	Indiana	420630004	(blank)	40 563332	-78 919998
	Lackawanna	420650004		41.470115	76.515556
	Lackawaiiia	420090101	A420090101LAT/LON POINT IS AT CORNER OF	41.479115	-73.378201
		420692006	A420692006LAT/LON POINT IS AT CORNER OF	41.44278	-75.6231
	Lancaster	420710007	A420710007LAT/LON POINT AT CORNER OF TRA	40.046665	-76.283302
		420710012	Lancaster DW	40.043835	-76.112396
	Lawrence	420730015	(blank)	40.99585	-80.346397
	Lebanon	420750100	LEBANON	40.337328	-76.383447
	Lehigh	420770004	A420770004LAT/LONG POINT IS OF SAMPLING	40 611942	-75 432503
	Luzerne	420791100		/1 209167	-76.003304
	Luzerne	420751100		41.205107	70.003304
		420791101	A420791101LAT/LON POINT IS AT CORNER OF	41.205550	-73.840397
	Lycoming	420810100	MONTOURSVILLE	41.250801	-76.923798
	Mercer	420850100	(blank)	41.215015	-80.484802
	Monroe	420890002	SWIFTWATER	41.083061	-75.323303
	Montgomery	420910013	A420910013LAT/LON POINT IS OF CORNER OF	40.112221	-75.309196
	Northampton	420950025	LAT/LON POINT IS CENTER OF TRAILER	40.628056	-75.341103
		420958000	COMBINED FASTON SITE (420950100) AND FAS	40 692223	-75 237198
	Perny	420990201		10.056011	-77 165604
	Philadalahia	420990301	A420990501LAT/LON FOINT IS AT COMMENCI	40.430344	-77.103004
	Philadelphia	421010004	Air Management Services Laboratory (AIVIS	40.008888	-75.097801
		421010024	North East Airport (NEA)	40.076401	-75.011497
		421011002	Pennypack Park-Phil	40.035985	-75.002405
	Somerset	421119991	Laurel Hill	39.9878	-79.2515
	Tioga	421174000	PENN STATE OZONE MONITORING SITE	41.644722	-76.939201
	Washington	421250005	(blank)	40,146667	-79.902199
		421250200	(blank)	40 170555	-80 261398
		421250200	(blank)	40.1/0355	80.420700
		421255001		40.445278	-80.420799
	westmoreland	421290006	(blank)	40.428078	-79.692802
		421290008	LAT/LON POINT IS TRAILER	40.304695	-79.505699
	York	421330008	A421330008LAT/LON POINT AT CORNER OF TRA	39.965279	-76.699402
		421330011	York DW	39.86097	-76.462097
	(blank)	420010002		39.93	-77.25
	. ,	420110001	A420110001LAT/LONG POINT IS OF SAMPLING	40 511112	-75 786102
		420110009		40 320278	-75 926697
		420110009	R420110009EAT/LONG FORM IS OF SAMFLING	40.320278	-75.520057
		420274000		40.774555	-//.022101
		420290050	LAT/LON POINT IS OF CORNER OF TRAILER	39.935665	-/5.604301
		420814000	NEXT TO TIADAGHTON SPORTMANS CLUB - NORT	41.334057	-77.449097
		421010014	Roxborough (ROX)	40.049618	-75.240799
		421010136	ON AMTRAK RIGHT OF WAY - NEAR AIRPORT HI	39.927502	-75.222801
RI	Kent	440030002	AJ	41.615238	-71,720001
1	Providence	440071010	EBANCIS SCHOOL East Providence	41 841572	-71 360802
	Washington	44000007		41 /0511	71.300002
	washington	440090007		41.49511	-/1.423098
VA	Alexandria City	515100009	Alexandria Health Dept.	38.810402	-//.044403
	Arlington	510130020	Aurora Hills Visitors Center	38.8577	-77.059196
	Fairfax	510590005	CUB RUN	38.8941	-77.4652
		510590018	MT VERNON	38.74232	-77.07743
1.1					

	State	County	AQS Code	Site	Latitude	Longitude
			510590030	Lee District Park	38.77335	-77.104698
			510591005	Annandale	38.83738	-77.16338
		Loudoun	511071005	Broad Run High School, Ashburn	39.024731	-77.489304
		Prince William	511530009	James S. Long Park	38 852871	-77 634598
	VT	Bonnington	511550005	Marca Airport State of Vermont Propert	42 007500	77.034550
Quitaliala		Calleart	10221002		42.007309	-73.249802
Outside-	AL	Colbert	10331002	MUSCLE SHUALS	34./58/81	-87.650597
OTR		DeKalb	10499991	Sand Mountain	34.2888	-85.9698
		Elmore	10510001	DBT, WETUMPKA	32.498566	-86.136597
		Etowah	10550011	SOUTHSIDE	33.904037	-86.053902
		Jefferson	10730023	North Birmingham	33,553055	-86.815002
			10731003	(hlank)	33 485558	-86 915001
			10731005		22.221112	00.010001
			10/31005	MICADORY	33.331112	-87.003601
			10731009	(blank)	33.459721	-87.305603
			10731010	Leeds	33.545277	-86.549202
			10732006	(blank)	33.386391	-86.816704
			10735002	(blank)	33,704723	-86.669197
			10735003	(blank)	33 801666	-86 942497
			10736003	(blank)	22 570225	86.772002
			10736002		33.3/8333	-80.773903
		Madison	10890014	HUNTSVILLE OLD AIRPORT	34.687672	-86.586403
		Montgomery	11011002	MOMS, ADEM	32.40712	-86.256401
		Morgan	11030011	DECATUR, Alabama	34.518734	-86.976898
		Russell	11130002	LADONIA, PHENIX CITY	32,467972	-85.083801
		Shelby	11170004	HELENA	33 317314	-86 825104
		Suptor	11190003		22 26401	99 201907
		Sumer	11190002	GASTON (SOIVITER)	32.30401	-88.201897
		iuscaloosa	11250010	DUNCANVILLE, TUSCALOUSA	33.0896	-87.459702
		(blank)	10270001	ASHLAND	33.281261	-85.8022
			10790002	SIPSEY (closed 11-01-2007)	34.342903	-87.339699
			11210003	TALLADEGA, (HONDA) Closed 11/01/06	33.498329	-86.122704
	AR	Crittenden	50350005	MARION	35,197289	-90,1931
		Newton	51010002	DEER	35 832726	-93 208298
		Dalk	51010002		24 45 4407	04 142202
		POIK	51130003		34.454407	-94.143303
		Pulaski	51190007	PARR	34.756187	-92.281303
			51191002	NLR AIRPORT	34.83572	-92.260597
			51191008	DOYLE SPRINGS ROAD	34.681343	-92.328697
		Washington	51430005	SPRINGDALE	36.179699	-94.116798
		(blank)	50970001		34,649723	-93.816704
		(2.2)	51191005		24 67627	-02 227106
			51151005		27.000084	76 200500
			516500004		37.000984	-76.398598
	GA	Bibb	130210012	Macon SE	32.805408	-83.543503
		Chatham	130510021	Savannah-E. President Street	32.069229	-81.048798
		Chattooga	130550001	Summerville-DNR Fish Hatchery	34.474293	-85.407997
		Clarke	130590002	FIRE STATION # 7	33.918068	-83.344498
		Cobb	130670003	Kennesaw-National Guard	34.015484	-84.607399
		Columbia	130730001	Evans-Biverside Park	33 582146	-82 131203
		Coweta	130770003	Nownan	22 404041	84 746002
		Coweta	130770002		33.404041	-84.740002
		Dawson	130850001	Dawsonville, Georgia Forestry Commission	34.376316	-84.059799
		DeKalb	130890002	South DeKalb	33.687969	-84.290497
		Douglas	130970004	W. Strickland Street	33.743656	-84.779198
		Fulton	131210055	Confederate Avenue	33.720192	-84.357101
		Glynn	131270006	Risley Middle School	31.169735	-81.495903
		, Gwinnett	131350002	GWINNETT TECH	33.961269	-84.069
		Henry	131510002	McDonough-County Extension Office	33 433575	-84 161697
		Murray	122120002	Fort Mountain	24 705100	-81 626101
		Nuccogos	132150003	Columbus Airport	34./03190	-04.020404
		iviuscogee	132150008	Cournbus-Airport	32.521301	-84.944801
		Paulding	132230003	Yorkville, King Farm	33.928501	-85.045303
		Pike	132319991	Georgia Station	33.1787	-84.4052
		Richmond	132450091	Bungalow Road	33.43335	-82.022202
		Rockdale	132470001	Monastery	33,591076	-84.0653
		Sumter	132611001	Leslie-Union High School	31 954298	-84 0811
		(blank)	120210012	zeone onion nigh ochool	22 827060	92 799606
		(blank)	130210013	Tueles Idlessed Deed	32.827909	-03.788050
			130893001		33.845/41	-04.213402
			131130001	DOT STORAGE FACILITY	33.455738	-84.418999
			132151003	Columbus-Crime Lab	32.508713	-84.880302
	IA	Bremer	190170011	WAVERLY AIRPORT SITE	42.743057	-92.5131
		Clinton	190450021	CLINTON, RAINBOW PARK	41.875	-90.177597
		Linn	191130028	KIRKWOOD	41,910557	-91.651901
			191130033		42 281012	-91 526901
			101120040	Dublic Hoalth	41 076769	01 607600
		Delle	191130040		41.9/0/08	-31.09/039
		POIK	191230030		41.003161	-93.04309/
		Scott	191630014	SCULT COUNTY PARK	41.699173	-90.521896
		Story	191690011	SLATER CITY HALL	41.882866	-93.687798
		Van Buren	191770006	LAKE SUGEMA STATE PARK II	40.69508	-92.006302
		Warren	191810022	GRAVEL ROAD IN LAKE AQUABI STATE PARK	41.285534	-93.584
		(blank)	101520059		A1 607777	-93 571900
	1	(blatik)	131320028		41.00/////	-33.371033

 State	County	AQS Code	Site	Latitude	Longitude
		191630015	DAVENPORT, JEFFERSON SCH.	41.53001	-90.587601
		191632011	ARGO, HIGHWAY MAINTENANCE	41.647499	-90.430801
		191770005	LAKE SUGEMA STATE PARK I	40.689167	-91.9944
IL	Adams	170010007	JOHN WOOD COMMUNITY COLLEGE	39.915409	-91.335899
	Champaign	170190007	THOMAS	40.244913	-88.188519
	Clark	170230001	416 S. State St. Hwy 1- West Union	39.210857	-87.668297
	Cook	170310001	VILLAGE GARAGE	41.670994	-87.732498
		170310032	SOUTH WATER FILTRATION PLANT	41.755833	-87.545303
		170310064	UNIVERSITY OF CHICAGO	41.790787	-87.601601
		170310076	COM ED MAINTENANCE BLDG	41.7514	-87.713501
		170311003	TAFT HS	41.984333	-87.792
		170311601		41 668121	-87 990601
		170314002		41.855244	-87 752502
		170314007		42.060284	-87 863197
		170314007		42.000204	-87 700202
		170314201		42.133330	-87 674202
	DuPage	170317002		42.001855	00 0720
	Effination	170450001		41.013049	-00.0720
	Emingham	170491001		39.067158	-88.548897
	Hamilton	170650002	TEN MILE CREEK DNR OFFICE	38.082153	-88.624901
	Jersey	170831001	ILLINI JR HIGH	39.110538	-90.324097
	Jo Daviess	170859991	Stockton	42.2869	-89.9997
	Kane	170890005	LARSEN JUNIOR HIGH	42.049149	-88.273003
	Lake	170971007	CAMP LOGAN TRAILER	42.467571	-87.809998
	Macon	171150013	IEPA TRAILER	39.866833	-88.925598
	Macoupin	171170002	IEPA TRAILER	39.396076	-89.8097
	Madison	171190008	CLARA BARTON SCHOOL	38.890186	-90.148003
		171191009	SOUTHWEST CABLE TV	38.726574	-89.959999
		171193007	WATER PLANT	38.860668	-90.105904
		171199991	Alhambra	38.869	-89.6228
	McHenry	171110001	CARY GROVE HS	42.221443	-88.242203
	McLean	171132003	ISU HARRIS PHYSICAL PLANT	40.518734	-88.996902
	Peoria	171430024	FIRESTATION	40.68742	-89.606903
		171431001	PEORIA HEIGHTS HS	40.745502	-89.585899
	Bandolph	171570001	IEPA TRAILER	38 176277	-89 788498
	Rock Island	171613002	ROCK ISLAND ARSENAL	41 514729	-90 517403
	Saint Clair	171630010	IEPA-BAPS TRAILER	38 612034	-90 1605
	Sangamon	171670014	SPED IB	39 831522	-89 640926
	Will	171971011	COM ED TRAINING CENTER	/1 221539	-88 191002
	Winnebago	172012001		41.221333	-90 027804
	(blank)	172012001		20 02201	-01 /0/108
	(blank)	17010000		40 122705	-91.404190 00 220E
		170190004	SE DOUCE STATION	40.123793	-00.2295
		170310050		41.707569	-87.568604
		170650001		37.998222	-88.493103
		170971002	NORTH FIRESTATION	42.386707	-87.8414
		171192007	IEPA-RAPS TRAILER	38.793343	-90.039803
		171670010	IDPH WAREHOUSE	39.844124	-89.604797
		171971008	FITNESS FORUM	41.57571	-88.055099
		172010009	WALKER SCHOOL	42.287189	-89.077003
IN	Allen	180030002	(blank)	41.221416	-85.0168
		180030004	Ft. Wayne- Beacon St.	41.094967	-85.101799
	Boone	180110001	Perry Worth ELEMENTRY SCHOOL, WEST OF WH	39.997482	-86.395203
	Carroll	180150002	Flora-Flora Airport	40.540455	-86.553001
	Clark	180190008	Charlestown State Park- 1051.8 meters Ea	38.393833	-85.6642
	Delaware	180350010	Albany- Albany Elem. Sch.	40.300014	-85.245399
	Elkhart	180390007	Bristol- Bristol Elem. Sch.	41.718048	-85.830597
	Floyd	180431004	New Albany- Green Valley Elem. Sch.	38.308056	-85.834198
	Greene	180550001	Plummer, 2500 S. W- Citizens gas Plummer	38.985577	-86.990097
	Hamilton	180570006	Our Lady of Grace- Noblesville	40.068298	-85.9925
	Hancock	180590003	Fortville- Fortville Municipal Building	39.93504	-85.8405
	Hendricks	180630004	AVON SCHOOL'S BUS BARN	39,759003	-86.397102
	Huntington	180690002	Roanoke- Roanoke Elem, School	40 960709	-85 379799
	lackson	180710001	Brownstown- 225 W & 200 N Water facilit	38 920845	-86 080498
	Johnson	180810002	Indian Creek Elementary School in Trafal	39 /172//	-86 152397
	KNO	180839991	Vincennes	33.71/244	-87 4853
	kino _x	180800022	Come UTDI (1210 E motors east of Tonnes	30.7400	-07.4035
	LdKe	100030022		41.000082	-87.304703
		180890030	Whiting-Whiting HS	41.6814	-87.494698
		180892008	HAMMOND CAAP- Hammond- 141st St.	41.639462	-87.493599
	LaPorte	180910005	Michigan City- 4th Street NIPSCO Gas St	41.717022	-86.9077
		180910010	LAPORTE OZONE SITE AT WATER TREATMENT PL	41.629097	-86.684601
	Madison	180950010	SCHOOL LOCATED ON THE SW CORNER OF US 36	40.002548	-85.656898
	Marion	180970050	Indpls Ft. Harrison	39.858921	-86.021301
		180970057	Indpls- Harding St.	39.74902	-86.186302
		180970073	Indpls E. 16th St.	39.789486	-86.060799
		180970078	Indpls- Washington Park/ in parking lot	39.811096	-86.114502
-					

State	County	AQS Code	Site	Latitude	Longitude	
	Morgan	181090005	Monrovia- Monrovia HS.	39.575634	-86.477898	
	Perry	181230009	Leopold- Perry Central HS	38 113159	-86 6036	
	Porter	181270024	Ogden Dunes- Water Treatment Plant	/1 617558	-87 199203	
	1 ofter	101270024		41.017330	07.135205	
		1812/0026	VALPARAISO	41.510292	-87.038498	
	Posey	181290003	ST. PHILLIPS- St. Phillips road CAAP tra	38.005287	-87.718399	
	Shelby	181450001	TRITON Middle SCHOOL, NORTH OF FAIRLAND	39.613422	-85.870598	
	St. Joseph	181410010	Potato Creek State Park	41.551697	-86.370598	
		181410015	SOLITH BEND-Shields Dr	11 696693	-86 21/699	
		181411007	(blank)	41.050055	86 110 407	
		181411007		41.742599	-80.110497	
	Vanderburgh	181630013	Inglefield/ Scott School	38.113949	-87.537003	
		181630021	Evansville- Buena Vista	38.013248	-87.577904	
	Vigo	181670018	TERRE HAUTE CAAP/ McLean High School	39.486149	-87.401398	
	-	181670024	Sandcut/ SITE LOCATED BY HOME BEHIND SH	39.560555	-87.313103	
	Warrick	181720008	Boonville- Boonville HS	28 052002	-97 278207	
	Wallick	101730008		38.032002	-07.278237	
		181/30009	Lynnville- Tecumsen HS	38.1945	-87.3414	
		181730011	Dayville	37.95451	-87.321899	
	(blank)	180510011	TOYOTA SITE	38.425251	-87.465897	
		180570005		40.065193	-86.008102	
		180890024	LOWELL CITY WASTEWATER TREATMENT PLANT	41 263889	-87 417503	
		180030024		20 646255	86.348803	
		180970042		39.040255	-80.248802	
		181270020		41.63139	-87.086899	
KY	Bell	210130002	MIDDLESBORO	36.608429	-83.7369	
	Boone	210150003	EAST BEND	38.918331	-84.8526	
	Bovd	210190017	ASHLAND PRIMARY (FIVCO)	38.459339	-82.640404	
	Bullitt	210290006	SHEDHERDSVILLE	37 98629	-85 711899	
	Canada all	210230000		37.30023	05.711055	
	Campbell	210373002	NORTHERN KENTUCKY UNIVERSITY (NKU)	39.021881	-84.474503	
	Carter	210430500	GRAYSON LAKE	38.238869	-82.988098	
	Christian	210470006	HOPKINSVILLE	36.911709	-87.323303	
	Daviess	210590005	OWENSBORO PRIMARY	37.780777	-87.075302	
	Edmonson	210610501	Mammoth Cave National Park Houchin Mead	37 131943	-86 147797	
	Eavette	210670012		28 065020	-84 407507	
	Croonup	210070012		38.003029	-04.497397	
	Greenup	210890007	WORTHINGTON	38.548138	-82.731201	
	Hancock	210910012	LEWISPORT	37.93829	-86.897202	
	Hardin	210930006	ELIZABETHTOWN	37.705612	-85.8526	
	Henderson	211010014	BASKETT	37.871201	-87.463799	
	Jefferson	211110027	Bates	38,13784	-85.5765	
		211110051	Watson Lane	38 060909	-85 898003	
		211110051		20.000505	85.656665	
		211110067	CANNONS LANE	38.22876	-85.654503	
	Jessamine	211130001	NICHOLASVILLE	37.891472	-84.588303	
	Livingston	211390003	SMITHLAND	37.155392	-88.393997	
	McCracken	211451024	JACKSON PURCHASE (PADUCAH PRIMARY)	37.05822	-88.572502	
	Oldham	211850004	BUCKNER	38.4002	-85.444298	
	Perry	211930003	HAZARD	37 283291	-83 209297	
	Diko	211050002		27 492601	82 525201	
	FIRE	211950002		37.482001	-82.555501	
	Pulaski	211990003	SOMERSEI	37.09798	-84.611504	
	Simpson	212130004	FRANKLIN	36.708607	-86.566299	
	Trigg	212218001	OLD DOVER HIGHWAY CADIZ, KY	36.78389	-87.851898	
	Warren	212270008	OAKLAND	37.035439	-86.250603	
	(blank)	210370003	SITE LOCATED AT NORTHERN KY WATER SERVIC	39.065556	-84,451897	
	(Bidini)	210670001		20 125022	94 4693	
		210070001		30.123032	-04.4003	
		210830003		30.899100	-00.493599	
		211111021		38.26355	-85./10297	
		211490001		37.606388	-87.253899	
		212090001		38.385834	-84.559998	
		212210013		36,90139	-88.013603	
		212299991	Mackville	37 704601	-85 0485	
	Possion	220150000	Shrovoport / Airport	22 526250	02 740001	
	BUSSIEI	220130008	Sineveport / Airport	32.330259	-93./48901	
	Caddo	220170001	DIXIE	32.676388	-93.859703	
	Ouachita	220730004	Monroe / Airport	32.509712	-92.046097	
MI	Allegan	260050003	Holland	42.767784	-86.148598	
	Benzie	260190003	(blank)	44,616943	-86.109398	
	Benzie	260190003	(blank) Coloma	44.616943	-86.109398	
	Benzie Berrien	260190003 260210014	(blank) Coloma	44.616943 42.197788	-86.109398 -86.3097	
	Benzie Berrien Cass	260190003 260210014 260270003	(blank) Coloma Cassopolis	44.616943 42.197788 41.895569	-86.109398 -86.3097 -86.001602	
	Benzie Berrien Cass Chippewa	260190003 260210014 260270003 260330901	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE	44.616943 42.197788 41.895569 46.49361	-86.109398 -86.3097 -86.001602 -84.364197	
	Benzie Berrien Cass Chippewa Clinton	260190003 260210014 260270003 260330901 260370001	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.)	44.616943 42.197788 41.895569 46.49361 42.79834	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799	
	Benzie Berrien Cass Chippewa Clinton Genesee	260190003 260210014 260270003 260330901 260370001 260490021	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank)	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197	
	Benzie Berrien Cass Chippewa Clinton Genesee	260190003 260210014 260270003 260330901 260370001 260490021 260492001	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank) Otisville	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222 43.168235	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197 -83.670197	
	Benzie Berrien Cass Chippewa Clinton Genesee	260190003 260210014 260270003 260330901 260370001 260490021 260490201	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank) Otisville	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222 43.168335 42.02020	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197 -83.461502	
	Benzie Berrien Cass Chippewa Clinton Genesee Huron	260190003 260210014 260270003 260330901 260370001 260490021 260492001 260630007	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank) Otisville RURAL THUMB AREA OZONE SITE	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222 43.168335 43.836388	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197 -83.461502 -82.642899	
	Benzie Berrien Cass Chippewa Clinton Genesee Huron Ingham	260190003 260210014 260270003 260330901 260370001 260490021 260492001 260630007 260650012	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank) Otisville RURAL THUMB AREA OZONE SITE (blank)	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222 43.168335 43.836388 42.738617	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197 -83.461502 -82.642899 -84.534599	
	Benzie Berrien Cass Chippewa Clinton Genesee Huron Ingham Kalamazoo	260190003 260210014 260270003 260330901 260370001 260490021 260490001 260650012 260650012 260770008	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank) Otisville RURAL THUMB AREA OZONE SITE (blank) KALAMAZOO FAIRGROUNDS	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222 43.168335 43.86388 42.738617 42.278069	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197 -83.461502 -82.642899 -84.534599 -85.541901	
	Benzie Berrien Cass Chippewa Clinton Genesee Huron Ingham Kalamazoo Kent	260190003 260210014 260270003 260330901 260490021 260490021 260630007 260650012 260570008 260810020	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank) Otisville RURAL THUMB AREA OZONE SITE (blank) KALAMAZOO FAIRGROUNDS GR-Monroe	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222 43.168335 43.836388 42.738617 42.278069 42.984173	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197 -83.461502 -82.642899 -84.534599 -85.541901 -85.541303	
	Benzie Berrien Cass Chippewa Clinton Genesee Huron Ingham Kalamazoo Kent	260190003 260210014 260270003 260330901 260490021 260490021 260630007 260650012 260770008 260810020 260810023	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank) Otisville RURAL THUMB AREA OZONE SITE (blank) KALAMAZOO FAIRGROUNDS GR-Monroe APPROXIMATELY 1/4 MILE SOUTH OF 14 MILE	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222 43.168335 43.836388 42.738617 42.278069 42.984173 43.172674	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197 -83.461502 -82.642899 -84.534599 -85.541901 -85.671303 -85.671303	
	Benzie Berrien Cass Chippewa Clinton Genesee Huron Ingham Kalamazoo Kent	260190003 260210014 260270003 260330901 260370001 260490021 260630007 260650012 260650012 260770008 260810020 260810022	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank) Otisville RURAL THUMB AREA OZONE SITE (blank) KALAMAZOO FAIRGROUNDS GR-Monroe APPROXIMATELY 1/4 MILE SOUTH OF 14 MILE 5702 RAISIN CENTER UNIV. LEMANUE 500 PD 50	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222 43.168335 43.836388 42.738617 42.278069 42.984173 43.176674 41.005567	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197 -83.461502 -82.642899 -84.534599 -85.541901 -85.671303 -85.416603	
	Benzie Berrien Cass Chippewa Clinton Genesee Huron Ingham Kalamazoo Kent Lenawee	260190003 260210014 260270003 260330901 260490021 260490021 260630007 260650012 260810020 260810022 260910007	(blank) Coloma Cassopolis NORTH OF EASTERDAY AVENUE ROSE LAKE, STOLL RD.(8562 E.) (blank) Otisville RURAL THUMB AREA OZONE SITE (blank) KALAMAZOO FAIRGROUNDS GR-Monroe APPROXIMATELY 1/4 MILE SOUTH OF 14 MILE 6792 RAISIN CENTER HWY, LENAWEE CO.RD.CO	44.616943 42.197788 41.895569 46.49361 42.79834 43.047222 43.168335 43.836388 42.738617 42.278069 42.984173 43.176674 41.995567	-86.109398 -86.3097 -86.001602 -84.364197 -84.393799 -83.670197 -83.461502 -82.642899 -84.534599 -85.541901 -85.671303 -85.416603 -83.946602	
 State	County	AQS Code	Site	Latitude	Longitude	
-----------	------------------	------------	---	------------	-------------	
		260991003	(blank)	42.51334	-83.005997	
	Manistee	261010922	(blank)	44.306999	-86.242599	
	Mason	261050007	LOCATED 550 FT NORTH OF US10	/3 953335	-86 294403	
	Missoukoo	261130001		44.310555	84 801 800	
	IVIISSaukee	261130001	LOCATED ABOUT 1/4 WILE WEST OF SITE	44.310555	-84.891899	
	Muskegon	261210039	(blank)	43.278061	-86.311096	
	Oakland	261250001	Oak Park	42.463062	-83.183197	
	Ottawa	261390005	Jenison	42.894451	-85.852699	
	Schoolcraft	261530001	Seney	46.288876	-85.950203	
	St. Clair	261470005	Port Huron	42 953335	-82 4562	
	Washtonaw	2614700003		42.3333333	82 500602	
	Washtenaw	201010008	Allen Dark	42.240500	82 208100	
	wayne	201030001	Allen Park	42.228019	-83.208199	
		261630019	East 7 Mile	42.43084	-83.000099	
	(blank)	260890001		45.028896	-85.629097	
		261630016		42.357807	-83.096001	
MN	Anoka	270031001	Cedar Creek	45.40184	-93.203102	
		270031002	Anoka Airport	45 13768	-93 207603	
	Goodhue	270495202	Stanton Air Eield	10120700	-92 012604	
	lalia	2704955502	Stanton An Tield	44.473733	-93.012004	
	Lake	270750005	Fernberg Koad	47.948624	-91.495598	
	Olmsted	271095008	Ben Franklin School	43.996906	-92.450401	
	Saint Louis	271377550	WDSE	46.81826	-92.089401	
	Scott	271390505	Shakopee	44.791435	-93.512497	
	Wright	271713201	St. Michael	45.20916	-93.669197	
	(blank)	270177416	Cloquet	46 705269	-92 523804	
	()	271370034	VOVAGELIRS NATIONAL PARK, NEAR SULLIVAN B	/8 /1333/	-92 830597	
	Daaraa	271370034	Finance Labor	40.415554	-32.830337	
IVIO	Boone	290190011	Finger Lakes	39.078602	-92.315201	
	Callaway	290270002	New Bloomfield	38.706081	-92.093102	
	Cedar	290390001	El Dorado Springs	37.689999	-94.035004	
	Greene	290770036	Hillcrest High School	37.256138	-93.299896	
		290770042	Fellows Lake	37.319511	-93.204597	
	Jefferson	290990019	Arnold West	38,448631	-90.398499	
	Lincoln	291130003	Foley	39 044701	-90 8647	
	Monroe	291370001	MTSP	39 //75136	-91 789101	
	Borny	201570001	(blank)	27 702641	90 609601	
	Pelly	291370001		37.702041	-89.098001	
	Saint Charles	291831002	West Alton	38.872547	-90.226501	
		291831004	Orchard Farm	38.899399	-90.449203	
	Saint Louis	291890005	Pacific	76.9804	-181.4104	
		291890014	Maryland Heights	77.421798	-180.951798	
		291893001	Ladue	38.650259	-90.350463	
	Sainte Genevieve	291860005	Bonne Terre	37,900841	-90.423897	
	St. Louis City	295100085	Blair Street	38 656498	-90 198601	
	Tanov	292120004	Branson	36 707726	-02 222	
	(hlank)	292130004	Branson	30.707720	-33.222	
	(blank)	290770026		37.122631	-93.263397	
		291890004	FORMERLY 5962 SOUTH LINDBERGH.	38.53278	-90.382401	
		291890006		38.613659	-90.495903	
		291895001		38.766159	-90.285896	
		291897003	.7 MILES E FROM OLD SITE ON S SIDE OF ST	38.720966	-90.367104	
		295100086	MARGARETTA CATEGORY B CORE SLAM PM25.	38.673222	-90.239197	
MS	Bolivar	280110001	Cleveland	33 746056	-90 723	
1113	DeSete	280220002	Horpando	24 921650	90.097901	
	Desoto	280330002		34.621039	-09.987801	
	Hinds	280490010	Jackson FS19	32.385/31	-90.141197	
	Lauderdale	280750003	Meridian	32.364567	-88.731499	
	Lee	280810005	TUPELO AIRPORT NEAR OLD NWS OFFICE	34.264915	-88.766197	
	Yalobusha	281619991	COFFEEVILLE	34.0026	-89.799	
	(blank)	280890002		32.564835	-90.178596	
		281490004		32.322834	-90.8871	
NC	Alexander	370030004	Waggin` Trail	35,929001	-81,189796	
	Δνοτγ	370110002		35 972221	-81 933098	
	, wery	370110002	CRANDERRY	26 1059	82.0454	
	Dura e e e h e	3701133331	CRAINBERNT Breat Carely	30.1038	-82.0434	
	Buncombe	370210030	Bent Creek	35.500103	-82.599899	
	Caldwell	370270003	Lenoir (city)	35.935833	-81.530296	
	Caswell	370330001	Cherry Grove	36.307034	-79.4674	
	Chatham	370370004	Pittsboro	35.757221	-79.159698	
	Cumberland	370510008	(blank)	35.158688	-78.727997	
		370511003	Golfview	34 968887	-78 962502	
	Davie	370590002	Mocksville	25 807068	-80 557297	
	Durham	370530005	Durban Armony	26 022044	78 005402	
		370030015		30.032944	-78.903403	
	Edgecombe	370650099	Leggett	35.988335	-//.582802	
	Forsyth	370670022	(blank)	36.110558	-80.2267	
1		370670028	NEW O3 SLAMS SITE 4/1/96; REPLACES FERGU	36.203056	-80.215797	
1		370670030	(blank)	36.026001	-80.342003	
1		370671008	(blank)	36.050835	-80.143898	
1	Franklin	370690001	Franklinton	36.096188	-78,463699	
1	Graham	370750001	Joanna Bald	35 257931	-83 795601	
1	Granvillo	270770001	Puthor	26 141100	70 760007	
1	Granville	3/0//0001	DULIIEI	30.141109	-/8./0809/	

State	County	AQS Code	Site	Latitude	Longitude
	Guilford	370810013	Mendenhall School	36.100712	-79.810501
	Havwood	370870008	WAYNSVL ELEM SCH	35.50716	-82.96337
	najnood	370870036	Purchase Knob	35 59	-83 077/99
		370870030		33.33	-83.077433
	Jonnston	3/1010002	West Johnston Co.	35.590832	-78.461899
	Lenoir	371070004	Lenoir Co. Comm. Coll.	35.231461	-77.568802
	Lincoln	371090004	Crouse	35.438557	-81.276802
	Martin	371170001	Jamesville School	35,810692	-76.897797
	Mecklenburg	2711000/1	Garinger High School	25 240101	-90 785608
	Meckleribulg	371190041		33.240101	-80.785058
		371191005	Arrowood	35.113163	-80.919502
		371191009	County Line	35.347221	-80.695
	Montgomery	371239991	CANDOR	35.2632	-79.8365
	New Hanover	371290002	Castle Havne	34 364166	-77 8386
	Demon	371450002	Bushy Fork	26.206065	70.002002
	Person	371450005	Busily Fork	30.300905	-79.092003
	Pitt	371470006	Pitt Agri. Center	35.638611	-77.358101
	Rockingham	371570099	Bethany sch.	36.308887	-79.8592
	Rowan	371590021	Rockwell	35.551868	-80.394997
		371590022	Enochville School	35 534481	-80 667603
	Swain	271720002	Brucon City	25 425500	92 442702
	Swalli	571750002	Bryson City	55.455509	-83.443703
	Union	371790003	Monroe School	34.973888	-80.540802
	Wake	371830014	Millbrook School	35.85611	-78.574203
		371830016	Fuguay-Varina	35.596943	-78.792503
	Yancev	371990004	Mt. Mitchell	35.765411	-82.2649
	(blank)	37050000	Cooleemee WATEP TREATMENT DI ANT	35 200700	-80 550007
	(Didilk)	370330002		33.009288	-00.33303/
		370610002	Kenansville	34.954823	-11.9608
		370630013		36.035557	-78.904198
		370670027	NEAR TOWN OF TOBACCOVILLE, BY POLLIROSA	36.236389	-80.410599
		370810011	,-····	36 113335	-79,703903
		270970004		25 50520	-82 964699
		5/06/0004	SW CONVER OF ROOF HATWOOD CO REALIN DEPA	33.30328	-02.304033
		370870035	Frying Pan Mountain	35.379166	-82.792503
		370990005	OZONE MONITOR ON SW SIDE OF TOWER/MET EQ	35.524445	-83.236099
		371310002	SITE IS APPROX1/2DISTANCE BETWEEN GASTON	36.484379	-77.620003
		371470099		35.583332	-77.5989
		271510004	SITE AT NEW MARKET ELEMENTARY SCHOOL	25 820555	-79 865202
		371310004	SITE AT NEW MARKET ELEMENTART SCHOOL	35.830333	-79.805505
		3/1830015		35.790024	-78.619698
		371830017	TV TOWER LOCATED AT AUBURN NC	35.676388	-78.535301
		371990003		35.737736	-82.285202
ОН	Allen	390030009	LIMA BATH	40.770943	-84.053902
	Ashtabula	390071001	CONNEALIT	11 959694	-80 5728
	Asiltabula	330071001		41.939094	-80.5728
	Athens	390090004	ATHENS OU	39.30798	-82.118202
	Butler	390170004	HAMILTON	39.383381	-84.544403
		390170018	MIDDLETOWN	39.52948	-84.393402
		390179991	Oxford	39.5327	-84.7286
	Clark	390230001	SPRINGEIELD WELL EIELD	/0.00103	-83 804604
	Clark	330230001		40.00103	02.007704
		390230003	MUDRUN	39.855671	-83.997704
	Clermont	390250022	BATAVIA	39.082802	-84.144096
	Clinton	390271002	LAUREL OAKS_JVS	39.430038	-83.788498
	Cuyahoga	390350034	5TH DISTRICT	41.555229	-81.575302
	.,	390350060	GT CRAIG	41 402110	-81 678398
		200250064		41 361000	01 064604
		390350064	DEREA	41.301889	-81.804001
		390355002	MAYFIELD	41.537346	-81.458801
	Delaware	390410002	DELAWARE	40.356693	-83.064003
	Fayette	390479991	Deer Creek	39.6359	-83.2605
	Franklin	390490029	NEW ALBNY	40 084499	-82 815498
		390/100027	FRANKLIN PK	30 065220	-82 955/08
		330430037		40.0077	02.333430
		390490081	MAPLE_C	40.0877	-82.959801
	Geauga	390550004	GEAUGA	41.515053	-81.249901
	Greene	390570006	XENIA	39.665749	-83.942902
	Hamilton	390610006	SYCAMORE	39,278702	-84.366096
		390610010	COLERAIN	20 21/020	-84 690903
		330010010		33.214939	-04.030303
		390610040	IAFI	39.12886	-84.503998
	Jefferson	390810017	STEUBEN	40.36644	-80.615601
	KNO _x	390830002	CENTERBURG	40.310024	-82.691704
	lake	390850003	EASTLAKE	41 673004	-81 422501
	LUNC	200050003		41 72691	01.722001
		33083000/	JI S (FAINSVILLE)	41./2081	-01.242203
	Lawrence	390870011	WILGUS	38.629009	-82.4589
		390870012	ODOT (IRONTON)	38.508114	-82.659302
	Licking	390890005	HEATH	40.026035	-82.432999
	lorain	390930019	SHEEFIELD	11 120882	-82 095702
	Lucas	330320019		41.420003	-02.033703
	LUCAS	390950024	EKIE	41.644066	-83.546303
		390950027	WATERVILLE	41.494175	-83.718903
		390950034	LOW SER	41.675213	-83.3069
	Madison	390970007		39 788189	-83 476097
	Mahaping	20000012	(blank)	41 006142	00 65007
	wanoning	220320013		41.090142	-00.058897
	Miami	391090005	MIAMI EAST	40.084549	-84.114098

St	tate	County	AQS Code	Site	Latitude	Longitude
		Montgomery	391130037	EASTWOOD	39.785629	-84.134399
		Portage	391331001	Rockwell	41.182465	-81.330498
		Prehle	391351001	NATIONAL TRAIL SCHOOL	39 835621	-84 720497
		Charle	391551001		40.020052	04.220437
		Stark	391510016	MALONE_COL	40.828053	-81.378304
			391510022	BREWSTER (WANDLE)	40.712776	-81.598297
			391514005	ALLIANCE	40.931396	-81.123497
		Summit	391530020	PATTERSON PARK (PATT_PARK)	41,106487	-81.503502
		Trumbull	301550000	KINISMAN	11 151225	-80 501002
		Tranibali	391330009	RINSMAN	41.434233	-80.331003
			391550011	ICSEG	41.240456	-80.662598
		Warren	391650007	LEBANON	39.426891	-84.200798
		Washington	391670004	MARIETTA_TWP.	39.432117	-81.460403
		Wood	391730003	BOWLING GREEN	41 377686	-83 611099
		(blank)	300400038		20 012761	82 0E7407
		(DIATIK)	390490028	KOEBEL SCHOOL IN SOUTH COLONIBUS	39.913701	-02.93/49/
			390870006		38.52079	-82.666397
			390950081	FRIENDSHIP PARK	41.719482	-83.475197
			391030003	MEDINA	41.100868	-81.911598
			391030004	CHIPPEWA	41 060398	-81 923897
			201120010		20.012000	84 105
			391130019		39.813889	-84.195
			391511009		40.870277	-81.331703
SC	c	Abbeville	450010001	DUE WEST	34.325317	-82.386398
		Aiken	450030003	JACKSON MIDDLE SCHOOL	33.342224	-81.788696
		Anderson	450070005	Big Creek	34 623238	-82 532097
		Barkalau	450070003		32.0023250	70.02000
		вегкејеу	450150002	BUSHY PARK PUMP STATION	32.987251	-79.936699
		Charleston	450190046	CAPE ROMAIN (VISTAS)	32.941025	-79.657204
		Chesterfield	450250001	CHESTERFIELD	34.615368	-80.198799
		Colleton	450290002	ASHTON	33.007866	-80,964996
		Darlington	450310003	Pee Dee Experimental Station	3/ 28569/	-79 7//90/
			450510005		22 720004	01.0526
		Eugeneid	450370001	TRENTON	33./39904	-81.8530
		Greenville	450450016	Hillcrest Middle School	34.751846	-82.256699
			450451003	FAMODA FARM	35.057396	-82.372902
		Pickens	450770002	CLEMSON CMS	34.653606	-82.838699
		Richland	450790007	ΡΔΡΚΙΔΝΕ	34 09396	-80 962303
		Richard	4507500031		22.014670	80.781007
			450790021		33.814078	-80.781097
			450791001	SANDHILL EXPERIMENTAL STATION	34.131264	-80.868301
		Spartanburg	450830009	NORTH SPARTANBURG FIRE STATION #2 (Shady	34.988705	-82.075798
		York	450910006	YORK CMS	34.935818	-81.228401
		(blank)	450110001	BARNWELL CMS	33 320343	-81 4655
		()	450210002	Cowpans	25 120208	-81 816507
			430210002	cowpens	55.150596	-01.010397
			450230002	Chester	34.792969	-81.203697
			450730001	LONG CREEK	34.80526	-83.237701
			450870001	DELTA	34.539379	-81.560402
			450890001	INDIANTOWN	33 723808	-79 565102
. т	'N	Anderson	470010101	Freel's Bend ozone and SO ₂ monitoring	35 965221	-8/ 223198
''		Blaust	470010101	Creat Gradie Mauritaire National Dark Las	25.000221	07.223130
		Blount	470090101	Great Smoky Mountains National Park, Loo	35.631489	-83.943497
			470090102	Great Smoky Mountains National Park, Cad	35.603058	-83.7836
		Claiborne	470259991	SPEEDWELL	36.47	-83.8268
		Davidson	470370011	(blank)	36,205002	-86,744698
			470370026	(blank)	36 1507/2	-86 623299
		the second second	470570020		25.222475	00.023233
		nanillun	4/0051011		55.2334/5	-03.1810UZ
			470654003	(blank)	35.102638	-85.162201
		Jefferson	470890002	New Market ozone monitor	36.105629	-83.602097
		KNO _x	470930021	East KNO _x Elementary School	36.085506	-83.764801
			470931020	Spring Hill Elementary School	36.019184	-83.873802
		Loudon	471050109	Loudon Middle School ozone monitor	35 720894	-84 342201
			474240404	Males County Ocean manifest	25.720034	04.046002
		Meigs	471210104	Meigs County Ozone monitor	35.289379	-84.946098
		Rutherford	471490101	Eagleville Ozone Monitor	35.73288	-86.5989
		Sevier	471550101	(blank)	35.696667	-83.609703
		Shelby	471570021	Frayser Ozone Monitor	35.217503	-90.019699
			471570075	Memphis-NCOBE	35 151699	-89 8502/9
			471570075	Edmund Orgill Dark Ozona	25.270155	80.834503
			4/15/1004		35.3/8155	-89.834503
		Sullivan	471632002	Blountville Ozone Monitor	36.541439	-82.424797
			471632003	Kingsport ozone monitor	36.582111	-82.485703
		Sumner	471650007	Hendersonville Ozone Site at Old Hickory	36.297562	-86.653099
		-	471650101	Cottontown Ozone Monitor	36 453976	-86 564102
		Williamson	171970106		25.455575	07 127001
		willdHSUI	4/10/0100		33.331334	-07.13/001
		Wilson	471890103	Cedars of Lebanon Ozone Monitor	36.060833	-86.286301
		(blank)	470750003	SHELTER IS IN A FLAT GRASSY AREA NEAR US	35.468719	-89.171097
			470990002	Lawrence Co ozone monitor	35.115967	-87.470001
			471410004	TVA PSD SITE IN PUTNAM COUNTY TN	36 205151	-85 399803
			471550102	Creat Create Magnetains National Dark Cli	25.203131	02 4001
			4/1550102	Great Smoky Wountains National Park, Cli	33.502//8	-03.4981
			500070007	PROCTOR MAPLE RESEARCH CTR	44.528389	-72.868797
(ד	x	Harrison	482030002	Karnack	32.668987	-94.167503
v.	/A	Albemarle	510030001	Albemarle High School	38.076569	-78.503998
"	-	Caroline	510220001	LISES Geomagnetic Center, Cerbin	28 200871	77 277402
-		CarUIIIC	21033000T	JJJJ JEUMAgnetic Center, CUIDIN	JU.2000/1	11.311403

State	County	AQS Code	Site	Latitude	Longitude
	Charles	510360002	Shirley Plantation	37.344379	-77.2593
	Chesterfield	510410004	, VDOT Chesterfield Residency Shon	37 357479	-77 593597
	Eairfay	510505004		20 0226	77 10000
	Fairtax	510595001	LEWINSVILLE	38.9326	-77.19822
	Fauquier	510610002	Chester Phelps Wildlife Management Area,	38.473671	-77.7677
	Frederick	510690010	Rest	39.281021	-78.081596
	Giles	510719991	Horton Station	37 3297	-80 5578
	Ulamatan City	5107 15551	NACA Leaster Desearch Conten	37.02722	76 207001
	Hampton City	510500008	NASA Langley Research Center	37.103733	-76.387001
	Hanover	510850003	Turner Property, Old Church	37.606129	-77.218803
	Henrico	510870014	MathScience Innovation Center	37.556519	-77.400299
	Madison	511130003	Shenandoah National Park Big Meadows	38 521984	-78 435799
	Page	511390004	Luray Caverns Airport	28 662721	-78 504402
		511550004		50.005751	70.504402
	Prince Edward	511479991	Prince Edward	37.1655	-78.3069
	Roanoke	511611004	East Vinton Elementary School	37.283421	-79.884499
	Rockbridge	511630003	Natural Bridge Ranger Station	37.626678	-79.512604
	Rockingham	511650003	POCKINGHAM CO VDOT	28 177521	78 819504
	Ctaffaud	511050005	Midewater Elementer Coloral	30.477331	78.819304
	Stattord	511790001	widewater Elementary School	38.481232	-77.370399
	Suffolk City	518000004	Tidewater Community College	36.90118	-76.438103
		518000005	VA Tech Agricultural Research Station. H	36.665249	-76.730797
	Wuthe	511970002	Rural Patroat Sowage Treatment Plant	26 801171	-81 254204
	wythe	311970002	Kulai Kelleat Sewage Treatment Plant	50.891171	-81.234204
WI	Brown	550090026	UW GREEN BAY	44.530979	-87.907997
	Columbia	550210015	COLUMBUS	43.315601	-89.108902
	Dane	550250041	MADISON EAST	43.100838	-89.3573
	Dodgo	550270001	Horicon Wildlife Area	12 16611	-88 621101
	Douge	5502/0001		45.40011	-00.021101
	Door	550290004	NEWPORT PARK	45.237	-86.992996
	Eau Claire	550350014	Eau Claire DOT	44.7614	-91.413
	Fond du Lac	550390006	FOND DU LAC	43.687401	-88,421997
	lefferson	550550002	IFFFFRSON	/3 001000	-88 818604
	Kanaaha	550550002		43.001333	-00.010004
	Kenosna	550590019	CHIWAUKEE PRAIKIE-STATELINE	42.504723	-81.809303
	Kewaunee	550610002	JUMBOS DRIVE-IN PROPERTY, SOUTH END OF K	44.443119	-87.505203
	La Crosse	550630012	LACROSSE - DOT BUILDING	43.7775	-91.226898
	Manitowoo	550710007		11 128618	87 616096
	Marathar	550710007		44 707252	07.010030
	iviaration	550/30012		44.707352	-89.//1/9/
	Milwaukee	550790010	HEALTH CENTER	43.016666	-87.933296
		550790026	DNR SER HQRS SITE	43.060974	-87.913498
		550790085	BAYSIDE	43,181	-87,900002
	Outagamia	EE0070000		14 207201	99 205102
	Outagamie	550870009	APPLETUN AAL	44.30/381	-88.395103
	Ozaukee	550890008	(blank)	43.342999	-87.919998
		550890009	HARRINGTON BEACH PARK	43.498058	-87.809998
	Bacine	551010017	RACINE	42 713898	-87 798599
	Pock	EE1050034		42.7 10000	90.062709
	RUCK	551050024		42.509079	-89.002/98
	Sauk	551110007	DEVILS LAKE PARK	43.435101	-89.679703
	Sheboygan	551170006	SHEBOYGAN KOHLER ANDRE	43.679001	-87.716003
	Tavlor	551199991	Perkinstown	45,2066	-90.5969
	Walworth	EE1370005		12 50000	-88 400001
	waiwortin	351270005		42.580009	-00.499001
	Waukesha	551330027	CLEVELAND SITE	43.020077	-88.215103
	(blank)	550030010	BAD RIVER	46.602001	-90.655998
		550270007	MAYVILLE	43.435001	-88,527802
		EE0270001		AE 704000	88 400000
		550370001		45.794998	-88.400002
		550410007		45.563	-88.8088
		550450001	NW CORNER OF TRAILER	42.53389	-89.659401
		550590002	KENOSHA - BARBERSHOP QUARTET SOCIETY	42.559166	-87.826103
		550710004	MOBILE SHELTER ADDROX 2/4 MLE OF COLL	11 0825	-87 968597
		550710004	MUDILE SHELLER, AFFROA 3/4 WILE OF COLLI	44.0023	-07.500537
		550790041	WILWAUKEE UWM-NORTH	43.075001	-87.884003
		550790044	APPLETON AVE	43.092777	-88.0056
		550791025		42.896389	-87.878098
		551091002	SOMERSET	45 12//25	-92 662697
		551051002		42 74 0224	07 01 24 02
		5511/000/		43.718334	-87.813103
		551230008	ON HILL NEAR PARK OFFICE AND MAINTENANCE	43.702221	-90.568298
		551250001	TROUT LAKE	46.051998	-89.653
		551310009	REPLACED SITE 55-131-0007	43 377771	-88 220200
		551510005	NEL LACED SHE 33-131-0007	43.327221	-00.220233
		551330017	WAUKESHA, CARROLL COLLEGE	43.003887	-88.231903
		551390011	ON SOUTHERN PROPERTY LINE OF PVHC PROPER	44.075279	-88.529701
wv	Berkelev	540030003	MARTINSBURG BALL FIELD	39,448006	-77.964104
	Cabell	54000000		20 121122	-87 475002
	Cabell	540110006	HEINDERSON CENTER/WARSHALL UNIVERSITY - M	38.424133	-82.423903
	Gilmer	540219991	Cedar Creek	38.8795	-80.8477
1	Greenbrier	540250003	SAM BLACK CHURCH - DOH GARAGE - GREENBRI	37.908531	-80.632599
	Hancock	540291004	(blank)	40 421530	-80 580704
	Kanauka	54020004		70.721333	00.000704
1	Kanawna	540390010	CHARLESTON BAPTIST TEMPLE/SITE MOVED FRO	38.3456	-81.028304
	Monongalia	540610003	(blank)	39.649368	-79.920898
1	Ohio	540690010	(blank)	40.114876	-80.700996
	Wood	541071002	Neale Elementary School	39 323532	-81 552399
1		J.10/100L		33.323332	01.001000

Appendix D. Additional Source Apportionment Modeling Results

Monitor Name	e/ID	Greenwich	Point Park, CT	9001	0017	Stratfo	ord, CT	9001	3017	Sherwood	l Island, CT	9001	9003
Sector	Sub Sector	Excee	dance Avg.	4 th Hig	gh Avg.	Exceeda	nce Avg.	4 th Hig	gh Avg.	Exceeda	ance Avg.	4 th Hig	sh Avg.
		Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
ERTAC EGU		3.3	4.7%	5.9	6.3%	4.9	7.0%	5.8	7.5%	5.3	7.3%	6.9	8.1%
Marine/Rail	CMV	2.1	3.0%	3.0	3.2%	2.4	3.4%	2.7	3.4%	2.2	3.0%	2.8	3.2%
	Rail	1.0	1.4%	1.2	1.3%	1.1	1.5%	1.2	1.5%	1.1	1.5%	1.3	1.5%
Marine/Rail T	otal	3.1	4.5%	4.2	4.4%	3.5	4.9%	3.9	5.0%	3.3	4.6%	4.0	4.7%
Non-EGU	Cement	0.3	0.5%	0.6	0.6%	0.4	0.6%	0.5	0.6%	0.4	0.6%	0.6	0.7%
	MWC	0.5	0.7%	0.8	0.8%	1.1	1.6%	1.3	1.6%	0.7	1.0%	0.9	1.1%
	Other	3.8	5.4%	6.1	6.5%	4.5	6.3%	5.1	6.5%	4.8	6.6%	6.0	7.0%
Non-EGU Tota	d	4.6	6.5%	7.5	8.0%	6.0	8.5%	6.8	8.7%	5.9	8.2%	7.5	8.7%
Nonpoint		6.6	9.5%	9.3	9.8%	5.4	7.7%	6.1	7.7%	5.9	8.2%	7.0	8.2%
Nonroad		13.4	19.3%	17.4	18.4%	10.2	14.5%	11.4	14.6%	10.3	14.3%	12.5	14.6%
Offshore		0.6	0.9%	1.1	1.2%	1.2	1.7%	1.4	1.8%	1.6	2.2%	2.1	2.5%
Oil & Gas	Nonpoint	1.1	1.5%	1.8	1.9%	1.1	1.6%	1.3	1.7%	1.1	1.5%	1.5	1.8%
	Point	0.4	0.5%	0.7	0.7%	0.4	0.6%	0.5	0.6%	0.4	0.6%	0.6	0.7%
Oil & Gas Tota	ıl	1.4	2.0%	2.4	2.6%	1.5	2.1%	1.8	2.3%	1.5	2.1%	2.1	2.5%
Onroad	Diesel	6.5	9.4%	9.3	9.8%	6.8	9.6%	7.5	9.6%	6.9	9.6%	8.4	9.9%
	Non-Diesel	6.1	8.7%	8.1	8.6%	5.4	7.6%	6.0	7.7%	5.4	7.5%	6.6	7.7%
Onroad Total		12.6	18.1%	17.4	18.4%	12.2	17.2%	13.5	17.3%	12.4	17.2%	15.1	17.6%
Residential W	ood												
Combustion		0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
Boundary Con	ditions	20.3	29.2%	23.3	24.7%	21.3	30.1%	22.2	28.4%	21.5	29.8%	22.9	26.8%
Canada		1.2	1.8%	2.5	2.6%	1.4	2.0%	1.7	2.2%	1.2	1.7%	1.8	2.1%
Biogenic		2.4	3.5%	3.2	3.3%	2.9	4.1%	3.3	4.2%	3.0	4.1%	3.4	4.0%
Other		0.1	0.2%	0.2	0.2%	0.1	0.2%	0.2	0.2%	0.1	0.2%	0.2	0.2%

Sector Summaries for Select Monitors

Monitor Nam	e/ID	Hammonas	set S.P. , CT	900	99002	Fort Grisw	old Park, CT	9011	0124	Bellevue	S.P., DE	1000	31013
Sector	Sub Sector	Exceeda	nce Avg.	4 th Hi	gh Avg.	Exceeda	ance Avg.	4 th Hig	gh Avg.	Exceeda	nce Avg.	4 th Hig	gh Avg.
		Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
ERTAC EGU		4.3	6.2%	5.7	6.9%	2.9	4.4%	4.9	5.4%	7.6	12.7%	7.6	12.7%
Marine/Rail	CMV	3.3	4.7%	3.9	4.7%	7.8	11.9%	11.2	12.3%	1.3	2.1%	1.3	2.1%
	Rail	1.2	1.7%	1.4	1.7%	1.0	1.5%	1.3	1.4%	1.2	2.1%	1.2	2.1%
Marine/Rail T	otal	4.5	6.4%	5.2	6.4%	8.7	13.4%	12.5	13.7%	2.5	4.1%	2.5	4.1%
Non-EGU	Cement	0.3	0.5%	0.5	0.6%	0.2	0.4%	0.4	0.5%	0.4	0.7%	0.4	0.7%
	MWC	0.9	1.3%	1.0	1.2%	0.6	0.9%	0.9	1.0%	0.2	0.3%	0.2	0.3%
	Other	4.3	6.1%	5.5	6.7%	3.5	5.3%	5.4	5.9%	4.2	6.9%	4.2	6.9%
Non-EGU Tota	al	5.5	7.9%	6.9	8.5%	4.3	6.6%	6.7	7.3%	4.8	8.0%	4.8	8.0%
Nonpoint		4.7	6.8%	5.7	7.0%	3.9	6.0%	5.7	6.2%	2.2	3.7%	2.2	3.7%
Nonroad		10.1	14.4%	11.7	14.3%	13.3	20.3%	19.4	21.3%	6.0	9.9%	6.0	9.9%
Offshore		2.1	3.0%	2.6	3.2%	3.0	4.5%	4.1	4.5%	0.2	0.4%	0.2	0.4%
Oil & Gas	Nonpoint	1.3	1.9%	1.7	2.1%	0.7	1.0%	1.3	1.4%	1.2	2.1%	1.2	2.1%
	Point	0.4	0.6%	0.6	0.7%	0.3	0.5%	0.6	0.6%	0.7	1.2%	0.7	1.2%
Oil & Gas Tota	al	1.7	2.5%	2.3	2.8%	1.0	1.5%	1.9	2.0%	2.0	3.3%	2.0	3.3%
Onroad	Diesel	6.4	9.2%	7.4	9.1%	4.3	6.6%	6.7	7.4%	5.3	8.8%	5.3	8.8%
	Non-Diesel	5.1	7.3%	6.0	7.3%	4.0	6.2%	6.0	6.6%	3.7	6.1%	3.7	6.1%
Onroad Total		11.5	16.5%	13.4	16.3%	8.3	12.8%	12.8	14.0%	9.0	14.9%	9.0	14.9%
Residential W	ood												
Combustion		0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
Boundary Con	nditions	21.3	30.4%	23.2	28.3%	16.7	25.5%	18.6	20.4%	21.9	36.4%	21.9	36.4%
Canada		1.2	1.6%	1.6	2.0%	0.8	1.2%	1.4	1.6%	0.4	0.7%	0.4	0.7%
Biogenic		2.9	4.2%	3.4	4.1%	2.4	3.6%	3.1	3.4%	3.5	5.8%	3.5	5.8%
Other		0.1	0.2%	0.2	0.2%	0.1	0.1%	0.2	0.2%	0.1	0.2%	0.1	0.2%

Monitor Name	/ID	McMilla	an, DC	11001	.0043	Fair Hi	ll, MD	24015	0003	Edgewo	od, MD	24025	51001
Sector	Sub Sector	Exceedance Avg.		4 th Hig	h Avg.	Exceeda	nce Avg.	4 th High Avg.		Exceedance Avg.		4 th High Avg.	
		Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
ERTAC EGU		4.5	7.3%	7.8	9.0%	8.2	12.9%	8.2	12.9%	8.0	11.1%	12.8	12.5%
Marine/Rail	CMV	0.4	0.7%	0.8	1.0%	1.2	1.9%	1.2	1.9%	3.0	4.2%	4.7	4.5%
	Rail	1.3	2.2%	1.5	1.7%	1.3	2.1%	1.3	2.1%	1.5	2.2%	1.7	1.7%
Marine/Rail To	otal	1.8	2.9%	2.3	2.7%	2.5	4.0%	2.5	4.0%	4.5	6.3%	6.4	6.2%
Non-EGU	Cement	0.4	0.6%	0.7	0.8%	0.5	0.8%	0.5	0.8%	0.7	1.0%	1.4	1.3%
	MWC	0.1	0.1%	0.1	0.2%	0.2	0.2%	0.2	0.2%	0.3	0.4%	0.5	0.5%
	Other	5.9	9.5%	8.7	10.1%	4.2	6.6%	4.2	6.6%	5.0	6.9%	8.5	8.3%

Monitor Name	/ID	McMil	an, DC	11001	0043	Fair Hi	ll, MD	24015	0003	Edgewo	od, MD	2402	51001
Sector	Sub Sector	Exceeda	nce Avg.	4 th Hig	h Avg.	Exceedar	nce Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.
		Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
Non-EGU Tota		6.3	10.3%	9.5	11.0%	4.9	7.7%	4.9	7.7%	6.0	8.3%	10.4	10.1%
Nonpoint		3.5	5.7%	5.4	6.3%	2.3	3.6%	2.3	3.6%	3.3	4.6%	5.3	5.2%
Nonroad		8.5	13.8%	12.6	14.6%	6.2	9.7%	6.2	9.7%	8.4	11.7%	13.2	12.9%
Offshore		0.2	0.3%	0.4	0.4%	0.2	0.3%	0.2	0.3%	0.1	0.2%	0.3	0.3%
Oil & Gas	Nonpoint	1.3	2.1%	2.3	2.6%	1.3	2.1%	1.3	2.1%	1.6	2.2%	3.0	2.9%
	Point	0.7	1.1%	1.2	1.4%	0.9	1.4%	0.9	1.4%	0.9	1.2%	1.5	1.5%
Oil & Gas Tota		2.0	3.2%	3.5	4.0%	2.2	3.4%	2.2	3.4%	2.4	3.4%	4.5	4.4%
Onroad	Diesel	6.0	9.7%	9.2	10.6%	5.5	8.6%	5.5	8.6%	6.4	9.0%	10.4	10.2%
	Non-Diesel	5.4	8.7%	7.9	9.2%	3.8	5.9%	3.8	5.9%	4.8	6.7%	7.5	7.3%
Onroad Total		11.3	18.3%	17.1	19.8%	9.3	14.5%	9.3	14.5%	11.3	15.7%	17.9	17.4%
Residential Wo	od Combustion	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
Boundary Con	ditions	19.9	32.1%	22.7	26.3%	23.7	37.1%	23.7	37.1%	23.2	32.3%	26.0	25.3%
Canada		0.7	1.1%	1.2	1.4%	0.4	0.6%	0.4	0.6%	0.4	0.6%	0.9	0.8%
Biogenic		3.0	4.8%	3.6	4.1%	3.8	5.9%	3.8	5.9%	3.9	5.5%	4.6	4.5%
Other		0.1	0.2%	0.2	0.2%	0.2	0.3%	0.2	0.3%	0.1	0.2%	0.3	0.3%

Monitor Nam	e/ID	P.G. Equestri	ian Ctr., MD	2403	38003	Leroy High	School, MA	25005	51002	Ancora St	. Hospital, NJ	34007	1001
Sector	Sub Sector	Exceedar	nce Avg.	4 th Hig	gh Avg.	Exceed	ance Avg.	4 th Hig	gh Avg.	Exceed	ance Avg.	4 th Hig	gh Avg.
		Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
ERTAC EGU		6.3	10.1%	7.6	10.6%	3.8	6.3%	3.8	6.3%	5.9	8.9%	5.9	8.9%
Marine/Rail	CMV	0.7	1.1%	0.9	1.2%	2.7	4.4%	2.7	4.4%	1.6	2.4%	1.6	2.4%
	Rail	1.4	2.2%	1.5	2.1%	1.1	1.8%	1.1	1.8%	1.4	2.1%	1.4	2.1%
Marine/Rail T	otal	2.1	3.3%	2.3	3.3%	3.7	6.2%	3.7	6.2%	3.0	4.5%	3.0	4.5%
Non-EGU	Cement	0.4	0.7%	0.5	0.7%	0.3	0.5%	0.3	0.5%	0.3	0.4%	0.3	0.4%
	MWC	0.1	0.2%	0.2	0.2%	0.6	1.0%	0.6	1.0%	0.8	1.2%	0.8	1.2%
	Other	5.3	8.4%	6.4	8.9%	4.1	6.9%	4.1	6.9%	6.2	9.3%	6.2	9.3%
Non-EGU Tota	al	5.8	9.2%	7.1	9.9%	5.1	8.4%	5.1	8.4%	7.2	10.9%	7.2	10.9%
Nonpoint		3.1	5.0%	3.8	5.3%	3.1	5.2%	3.1	5.2%	2.8	4.2%	2.8	4.2%
Nonroad		7.6	12.1%	9.2	12.8%	7.9	13.1%	7.9	13.1%	6.6	9.9%	6.6	9.9%
Offshore		0.0	0.0%	0.0	0.0%	4.4	7.3%	4.4	7.3%	0.2	0.3%	0.2	0.3%
Oil & Gas	Nonpoint	1.5	2.4%	1.9	2.6%	0.8	1.4%	0.8	1.4%	1.6	2.4%	1.6	2.4%
	Point	0.8	1.2%	0.9	1.3%	0.4	0.7%	0.4	0.7%	0.7	1.0%	0.7	1.0%
Oil & Gas Tota	al	2.3	3.6%	2.8	3.9%	1.3	2.1%	1.3	2.1%	2.3	3.4%	2.3	3.4%
Onroad	Diesel	6.5	10.3%	7.8	10.8%	4.9	8.1%	4.9	8.1%	6.4	9.7%	6.4	9.7%
	Non-Diesel	4.8	7.5%	5.7	7.9%	3.8	6.3%	3.8	6.3%	3.9	5.8%	3.9	5.8%
Onroad Total		11.3	17.8%	13.4	18.8%	8.7	14.4%	8.7	14.4%	10.3	15.5%	10.3	15.5%
Residential W	ood												
Combustion		0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
Boundary Cor	nditions	20.6	32.6%	21.1	29.5%	18.8	31.2%	18.8	31.2%	22.9	34.6%	22.9	34.6%
Canada		0.2	0.3%	0.2	0.3%	0.4	0.7%	0.4	0.7%	1.1	1.7%	1.1	1.7%
Biogenic		3.5	5.6%	3.8	5.3%	2.9	4.9%	2.9	4.9%	3.9	5.8%	3.9	5.8%
Other		0.2	0.3%	0.2	0.3%	0.2	0.3%	0.2	0.3%	0.3	0.4%	0.3	0.4%

Monitor Name	e/ID	Collier's	Mill, NJ	34029	90006	Clarksboro, NJ		340150002		Susan Wagner HS, NY		360850067	
Sector	Sub Sector	Exceedar	nce Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.	Exceeda	ance Avg.	4 th Hig	h Avg.
		Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
ERTAC EGU		4.7	7.4%	7.8	8.7%	7.2	10.7%	8.8	11.4%	6.4	9.0%	10.3	10.4%
Marine/Rail	CMV	1.4	2.2%	2.3	2.6%	2.1	3.1%	2.5	3.2%	2.0	2.7%	2.9	3.0%
	Rail	1.1	1.8%	1.3	1.5%	1.3	2.0%	1.4	1.8%	1.3	1.8%	1.5	1.5%
Marine/Rail To	otal	2.6	4.0%	3.6	4.0%	3.4	5.1%	3.9	5.1%	3.2	4.6%	4.4	4.5%
Non-EGU	Cement	0.3	0.4%	0.5	0.5%	0.4	0.5%	0.4	0.6%	0.6	0.9%	1.1	1.2%
	MWC	0.9	1.4%	1.6	1.8%	0.7	1.0%	0.8	1.1%	0.7	1.0%	1.2	1.2%
	Other	4.6	7.2%	7.5	8.4%	6.2	9.2%	7.4	9.7%	5.0	7.0%	8.0	8.1%
Non-EGU Tota	I	5.8	9.0%	9.5	10.6%	7.3	10.8%	8.7	11.4%	6.3	8.8%	10.4	10.5%
Nonpoint		4.1	6.4%	6.8	7.5%	3.8	5.7%	4.7	6.2%	5.0	7.0%	8.0	8.0%
Nonroad		6.8	10.5%	10.7	11.9%	6.4	9.5%	7.8	10.2%	8.7	12.2%	12.8	13.0%
Offshore		0.5	0.7%	0.8	0.9%	0.3	0.4%	0.3	0.4%	0.8	1.1%	1.3	1.3%
Oil & Gas	Nonpoint	1.5	2.3%	2.4	2.7%	1.5	2.3%	1.8	2.4%	1.5	2.1%	2.3	2.3%
	Point	0.6	0.9%	0.9	1.0%	0.8	1.1%	0.9	1.2%	0.6	0.9%	1.0	1.0%
Oil & Gas Tota	1	2.0	3.2%	3.4	3.7%	2.3	3.4%	2.7	3.6%	2.1	2.9%	3.3	3.3%
Onroad	Diesel	6.0	9.4%	9.4	10.5%	5.9	8.7%	7.2	9.4%	6.9	9.6%	10.1	10.2%
	Non-Diesel	3.9	6.1%	6.1	6.8%	4.0	5.9%	4.8	6.3%	4.5	6.3%	6.8	6.8%
Onroad Total		9.9	15.4%	15.5	17.3%	9.9	14.6%	12.0	15.7%	11.4	16.0%	16.9	17.1%
Residential W	ood Combustion	0.0	0.0%	0.1	0.1%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
Boundary Con	ditions	22.8	35.5%	25.0	27.9%	22.3	33.1%	22.8	29.8%	22.6	31.7%	25.2	25.4%
Canada		1.6	2.5%	2.8	3.1%	0.5	0.7%	0.6	0.8%	1.2	1.6%	2.2	2.2%
Biogenic		3.2	4.9%	3.4	3.8%	3.9	5.8%	4.0	5.2%	3.5	5.0%	4.1	4.1%

Monitor Name/ID		Collier's Mill, NJ		340290006		Clarksboro, NJ		340150002		Susan Wagner HS, NY		360850067	
Sector	Sub Sector	Exceedance Avg.		4 th High Avg.		Exceedance Avg.		4 th High Avg.		Exceedance Avg.		4 th High Avg.	
		Total	%	Total	Total %		%	Total	%	Total	%	Total	%
Other		0.2	0.3%	0.3	0.3%	0.2	0.2%	0.2	0.2%	0.2	0.2%	0.3	0.3%

Monitor Name	/ID	Holtsvil	le, NY	36103	0009	Babylo	on, NY	36103	0002	NEA,	, PA	42101	.0024
Sector	Sub Sector	Exceedan	ice Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Higl	h Avg.	Exceedar	nce Avg.	4 th Hig	h Avg.
		Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
ERTAC EGU		4.6	7.9%	7.0	9.2%	4.7	6.6%	6.9	7.6%	6.6	9.9%	6.6	9.9%
Marine/Rail	CMV	1.9	3.3%	2.8	3.7%	1.5	2.1%	2.0	2.2%	1.4	2.1%	1.4	2.1%
	Rail	1.0	1.6%	1.1	1.4%	1.1	1.5%	1.3	1.4%	1.3	1.9%	1.3	1.9%
Marine/Rail To	tal	2.9	4.9%	3.9	5.1%	2.6	3.6%	3.3	3.6%	2.7	4.0%	2.7	4.0%
Non-EGU	Cement	0.3	0.5%	0.4	0.6%	0.3	0.5%	0.6	0.6%	0.4	0.7%	0.4	0.7%
	MWC	0.7	1.1%	1.0	1.3%	0.4	0.6%	0.6	0.7%	0.6	0.8%	0.6	0.8%
	Other	4.0	6.8%	5.6	7.3%	4.6	6.4%	6.5	7.2%	4.9	7.4%	4.9	7.4%
Non-EGU Total		4.9	8.3%	7.0	9.2%	5.4	7.5%	7.7	8.5%	6.0	8.9%	6.0	8.9%
Nonpoint		4.1	7.0%	5.4	7.1%	6.0	8.3%	7.6	8.4%	2.8	4.2%	2.8	4.2%
Nonroad		7.4	12.7%	10.5	13.7%	9.8	13.6%	12.7	14.0%	6.7	10.0%	6.7	10.0%
Offshore		2.3	3.8%	3.0	3.9%	1.1	1.5%	1.6	1.8%	0.3	0.4%	0.3	0.4%
Oil & Gas	Nonpoint	1.0	1.7%	1.5	1.9%	1.5	2.0%	2.1	2.3%	1.7	2.6%	1.7	2.6%
	Point	0.4	0.7%	0.6	0.8%	0.5	0.7%	0.7	0.8%	0.8	1.2%	0.8	1.2%
Oil & Gas Total		1.4	2.4%	2.1	2.7%	1.9	2.7%	2.8	3.1%	2.5	3.7%	2.5	3.7%
Onroad	Diesel	5.8	9.9%	8.0	10.4%	7.0	9.7%	9.2	10.1%	6.1	9.1%	6.1	9.1%
	Non-Diesel	4.4	7.4%	6.1	8.0%	5.2	7.2%	6.8	7.5%	4.0	6.0%	4.0	6.0%
Onroad Total		10.2	17.4%	14.1	18.5%	12.2	16.9%	16.0	17.6%	10.2	15.2%	10.2	15.2%
Residential Wo	od Combustion	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
Boundary Conc	litions	17.4	29.6%	18.7	24.4%	23.9	33.1%	26.1	28.8%	25.1	37.4%	25.1	37.4%
Canada		0.9	1.5%	1.6	2.1%	1.3	1.9%	2.2	2.4%	0.4	0.6%	0.4	0.6%
Biogenic		2.5	4.3%	2.9	3.7%	3.0	4.2%	3.5	3.9%	3.7	5.5%	3.7	5.5%
Other		0.1	0.2%	0.2	0.2%	0.2	0.2%	0.3	0.3%	0.1	0.2%	0.1	0.2%

Monitor Name	Monitor Name/ID		Baxter, PA		421011002		AJ, RI		440030002		Aurora Hills, VA		510130020	
Sector	Sub Sector	Exceeda	nce Avg.	4 th Hig	sh Avg.	Exceeda	nce Avg.	4 th Hig	gh Avg.	Exceeda	ance Avg.	4 th Hig	sh Avg.	
		Total	%	Total	%	Total	%	Total	%	Total	%	Total	%	
ERTAC EGU		6.4	9.9%	6.4	9.9%	4.0	6.6%	4.0	6.6%	5.2	8.1%	7.9	9.2%	
Marine/Rail	CMV	1.3	2.1%	1.3	2.1%	2.6	4.3%	2.6	4.3%	0.4	0.6%	0.7	0.8%	
	Rail	1.2	1.9%	1.2	1.9%	1.2	2.0%	1.2	2.0%	1.5	2.3%	1.6	1.8%	
Marine/Rail To	otal	2.6	4.0%	2.6	4.0%	3.7	6.3%	3.7	6.3%	1.9	2.9%	2.2	2.6%	
Non-EGU	Cement	0.4	0.7%	0.4	0.7%	0.3	0.5%	0.3	0.5%	0.6	0.9%	1.0	1.1%	
	MWC	0.5	0.8%	0.5	0.8%	0.8	1.3%	0.8	1.3%	0.1	0.1%	0.1	0.1%	
	Other	4.8	7.4%	4.8	7.4%	4.1	6.9%	4.1	6.9%	5.0	7.7%	7.2	8.5%	
Non-EGU Tota	I	5.7	8.9%	5.7	8.9%	5.2	8.7%	5.2	8.7%	5.7	8.7%	8.3	9.7%	
Nonpoint		2.7	4.2%	2.7	4.2%	3.1	5.1%	3.1	5.1%	3.9	5.9%	5.5	6.4%	
Nonroad		6.4	10.0%	6.4	10.0%	7.5	12.6%	7.5	12.6%	9.8	15.1%	13.5	15.8%	
Offshore		0.3	0.4%	0.3	0.4%	2.1	3.6%	2.1	3.6%	0.1	0.2%	0.2	0.2%	
Oil & Gas	Nonpoint	1.6	2.6%	1.6	2.6%	1.3	2.2%	1.3	2.2%	1.5	2.3%	2.3	2.7%	
	Point	0.8	1.2%	0.8	1.2%	0.5	0.9%	0.5	0.9%	0.8	1.2%	1.2	1.4%	
Oil & Gas Tota	I	2.4	3.7%	2.4	3.7%	1.9	3.1%	1.9	3.1%	2.2	3.5%	3.5	4.1%	
Onroad	Diesel	5.9	9.2%	5.9	9.2%	5.0	8.4%	5.0	8.4%	6.4	9.9%	9.1	10.7%	
	Non-Diesel	3.9	6.0%	3.9	6.0%	3.9	6.6%	3.9	6.6%	5.9	9.0%	8.1	9.5%	
Onroad Total		9.8	15.2%	9.8	15.2%	9.0	15.0%	9.0	15.0%	12.3	18.9%	17.2	20.2%	
Residential We	bod													
Combustion		0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	
Boundary Con	ditions	24.2	37.4%	24.2	37.4%	19.1	32.1%	19.1	32.1%	19.7	30.4%	22.2	26.1%	
Canada		0.4	0.6%	0.4	0.6%	0.7	1.2%	0.7	1.2%	0.5	0.7%	0.8	1.0%	
Biogenic		3.5	5.5%	3.5	5.5%	3.2	5.3%	3.2	5.3%	3.5	5.4%	3.8	4.5%	
Other		0.1	0.2%	0.1	0.2%	0.2	0.3%	0.2	0.3%	0.1	0.2%	0.2	0.2%	

State Summaries for Select Monitors

Monitor Name/ID	Greenwich Point Park, CT		90010017		Stratfo	ord, CT	90013017		Sherwood Island, CT		90019003	
	Exce	edance Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.	Exceeda	ance Avg.	4 th High Avg.	
State	Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
AL (Partial)	0.1	0.1%	0.3	0.2%	0.2	0.2%	0.3	0.3%	0.3	0%	0.5	0.5%
AR (Partial)	0.1	0.1%	0.2	0.2%	0.2	0.2%	0.3	0.3%	0.2	0%	0.3	0.3%
СТ	15.9	18.0%	19.9	16.1%	10.7	12.5%	12.3	12.9%	7.2	8%	9.5	8.9%
DC	0.1	0.1%	0.2	0.2%	0.1	0.2%	0.2	0.2%	0.1	0%	0.2	0.2%
DE	0.4	0.5%	0.8	0.7%	0.7	0.8%	0.8	0.8%	1.0	1%	1.3	1.2%
GA (Partial)	0.2	0.2%	0.3	0.3%	0.3	0.3%	0.3	0.3%	0.4	0%	0.6	0.6%
IA (Partial)	0.1	0.1%	0.2	0.2%	0.1	0.1%	0.1	0.1%	0.1	0%	0.1	0.1%
IL	0.8	0.9%	1.7	1.4%	0.8	1.0%	1.0	1.1%	0.7	1%	1.1	1.0%
IN	0.9	1.1%	2.0	1.6%	1.1	1.2%	1.3	1.4%	1.1	1%	1.5	1.4%
КҮ	0.7	0.8%	1.5	1.2%	0.8	0.9%	1.0	1.0%	1.0	1%	1.5	1.4%
LA (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0%	0.0	0.0%
MA	0.1	0.2%	0.3	0.2%	0.1	0.2%	0.2	0.2%	0.2	0%	0.4	0.3%
MD	2.5	2.8%	5.0	4.0%	3.8	4.5%	4.7	4.9%	4.4	5%	6.0	5.6%
ME	0.0	0.0%	0.1	0.1%	0.0	0.0%	0.0	0.0%	0.0	0%	0.0	0.0%
MI	0.8	0.9%	1.5	1.2%	0.9	1.1%	1.2	1.2%	0.9	1%	1.2	1.1%
MN (Partial)	0.1	0.1%	0.2	0.1%	0.1	0.1%	0.1	0.1%	0.1	0%	0.1	0.1%
MO (Partial)	0.3	0.4%	0.8	0.6%	0.4	0.4%	0.5	0.5%	0.3	0%	0.5	0.5%
MS (Partial)	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.1	0%	0.2	0.1%
NC	0.6	0.6%	1.2	1.0%	0.5	0.6%	0.6	0.7%	0.5	1%	0.7	0.7%
NH	0.0	0.0%	0.1	0.1%	0.0	0.0%	0.0	0.0%	0.0	0%	0.1	0.1%
NJ	13.2	15.0%	18.8	15.2%	14.3	16.8%	16.0	16.8%	16.4	19%	19.1	17.9%
NY	34.1	38.8%	40.5	32.6%	30.9	36.2%	32.3	33.9%	30.7	35%	34.9	32.7%
он	2.0	2.3%	4.0	3.2%	1.8	2.1%	2.2	2.3%	2.0	2%	2.8	2.6%
PA	10.4	11.8%	15.3	12.3%	12.7	14.8%	14.1	14.7%	13.6	16%	16.2	15.2%
RI	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.1	0%	0.1	0.1%
SC	0.1	0.1%	0.3	0.2%	0.2	0.2%	0.2	0.3%	0.2	0%	0.3	0.3%
TN	0.3	0.3%	0.7	0.5%	0.5	0.5%	0.6	0.6%	0.6	1%	0.9	0.8%
TX (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0%	0.0	0.0%
VA	2.5	2.8%	5.2	4.2%	2.7	3.1%	3.3	3.4%	3.0	3%	4.2	3.9%
VT	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0%	0.0	0.0%
WI	0.2	0.3%	0.5	0.4%	0.3	0.3%	0.4	0.4%	0.3	0%	0.4	0.4%
wv	1.3	1.5%	2.4	1.9%	1.1	1.3%	1.4	1.4%	1.5	2%	2.1	2.0%

Monitor Name/ID	Hammonasset S.P., CT		9009	90099002		Fort Griswold Park, CT		0124	Bellevue S.P., DE		100031013	
	Exceeda	nce Avg.	4 th Hig	h Avg.	Exceed	ance Avg.	4 th Hig	h Avg.	Exceedar	nce Avg.	4 ^m High Avg.	
State	Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
AL (Partial)	0.1	0.2%	0.2	0.2%	0.1	0.1%	0.2	0.1%	0.3	0%	0.3	0.5%
AR (Partial)	0.1	0.2%	0.2	0.2%	0.1	0.1%	0.2	0.2%	0.1	0%	0.1	0.2%
СТ	12.2	14.8%	13.8	14.0%	19.2	23.2%	28.7	23.6%	0.0	0%	0.0	0.0%
DC	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.8	1%	0.8	1.3%
DE	0.7	0.8%	0.8	0.8%	0.7	0.8%	1.0	0.8%	6.3	10%	6.3	9.5%
GA (Partial)	0.1	0.2%	0.2	0.2%	0.1	0.1%	0.2	0.2%	0.6	1%	0.6	0.9%
IA (Partial)	0.1	0.2%	0.2	0.2%	0.1	0.1%	0.2	0.2%	0.2	0%	0.2	0.3%
IL	1.0	1.3%	1.5	1.5%	0.7	0.9%	1.6	1.3%	1.1	2%	1.1	1.7%
IN	1.3	1.5%	1.9	1.9%	0.9	1.1%	2.1	1.7%	1.8	3%	1.8	2.8%
КҮ	1.0	1.2%	1.5	1.5%	0.6	0.7%	1.3	1.0%	2.3	4%	2.3	3.5%
LA (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0%	0.0	0.0%
MA	0.2	0.3%	0.3	0.3%	0.4	0.5%	0.9	0.7%	0.0	0%	0.0	0.0%
MD	2.7	3.3%	3.6	3.7%	2.4	2.9%	4.2	3.5%	20.3	31%	20.3	30.9%
ME	0.0	0.0%	0.0	0.0%	0.0	0.1%	0.1	0.1%	0.0	0%	0.0	0.0%
MI	0.9	1.1%	1.3	1.3%	0.8	1.0%	1.6	1.3%	0.7	1%	0.7	1.1%
MN (Partial)	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.2	0.2%	0.1	0%	0.1	0.1%
MO (Partial)	0.5	0.6%	0.7	0.7%	0.4	0.4%	0.8	0.7%	0.8	1%	0.8	1.2%
MS (Partial)	0.1	0.1%	0.1	0.1%	0.0	0.0%	0.1	0.1%	0.0	0%	0.0	0.1%
NC	0.6	0.7%	0.9	0.9%	0.6	0.8%	1.4	1.1%	0.5	1%	0.5	0.7%
NH	0.0	0.1%	0.1	0.1%	0.1	0.1%	0.2	0.1%	0.0	0%	0.0	0.0%
NJ	11.5	13.9%	13.4	13.5%	7.9	9.6%	10.9	9.0%	0.4	1%	0.4	0.6%
NY	30.9	37.5%	34.2	34.7%	34.7	41.8%	43.7	35.9%	0.6	1%	0.6	0.9%
он	2.7	3.2%	3.8	3.9%	1.7	2.0%	3.5	2.9%	4.5	7%	4.5	6.8%
PA	11.5	13.9%	14.1	14.3%	7.1	8.6%	10.4	8.5%	10.5	16%	10.5	15.9%
RI	0.1	0.1%	0.1	0.1%	0.4	0.5%	1.0	0.8%	0.0	0%	0.0	0.0%
SC	0.1	0.1%	0.2	0.2%	0.1	0.1%	0.2	0.2%	0.1	0%	0.1	0.2%
TN	0.4	0.5%	0.6	0.6%	0.2	0.3%	0.5	0.4%	0.5	1%	0.5	0.7%
TX (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0%	0.0	0.0%
VA	1.8	2.2%	2.5	2.5%	2.1	2.6%	4.3	3.5%	8.2	12%	8.2	12.5%
VT	0.0	0.0%	0.0	0.0%	0.1	0.1%	0.1	0.1%	0.0	0%	0.0	0.0%
WI	0.3	0.4%	0.4	0.4%	0.3	0.3%	0.5	0.4%	0.3	0%	0.3	0.5%
wv	1.3	1.6%	1.9	2.0%	0.8	1.0%	1.7	1.4%	4.7	7%	4.7	7.2%

Monitor Name/ID	McMillan, DC		110010043		Fair Hi	ll, MD	240150003		Edgewood, MD		240251001	
	Exceedan	ice Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.
State	Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
AL (Partial)	0.4	0.5%	0.7	0.7%	0.4	0.5%	0.4	0.5%	0.6	0.7%	1.5	1.1%
AR (Partial)	0.1	0.2%	0.2	0.2%	0.1	0.2%	0.1	0.2%	0.2	0.2%	0.3	0.2%
СТ	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.1	0.0%
DC	8.8	11.9%	11.5	10.3%	0.9	1.4%	0.9	1.4%	1.1	1.3%	1.7	1.3%
DE	0.1	0.1%	0.1	0.1%	0.2	0.3%	0.2	0.3%	0.2	0.3%	0.6	0.4%
GA (Partial)	0.2	0.2%	0.3	0.3%	0.6	0.9%	0.6	0.9%	0.5	0.6%	1.2	0.9%
IA (Partial)	0.1	0.2%	0.2	0.2%	0.2	0.4%	0.2	0.4%	0.2	0.2%	0.4	0.3%
IL	1.1	1.4%	2.0	1.8%	1.2	1.7%	1.2	1.7%	1.3	1.5%	2.4	1.8%
IN	2.4	3.3%	4.5	4.0%	2.2	3.2%	2.2	3.2%	2.3	2.8%	4.5	3.3%
КҮ	1.9	2.6%	3.5	3.1%	2.6	3.8%	2.6	3.8%	2.4	2.8%	4.8	3.5%
LA (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.1	0.0%
MA	0.0	0.0%	0.1	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
MD	16.5	22.4%	24.0	21.4%	25.5	37.2%	25.5	37.2%	40.7	48.0%	54.1	39.7%
ME	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
MI	1.2	1.6%	2.1	1.9%	0.8	1.1%	0.8	1.1%	1.6	1.9%	3.2	2.4%
MN (Partial)	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.2	0.1%
MO (Partial)	0.7	1.0%	1.5	1.3%	0.8	1.2%	0.8	1.2%	0.7	0.9%	1.6	1.1%
MS (Partial)	0.0	0.1%	0.1	0.1%	0.0	0.1%	0.0	0.1%	0.1	0.1%	0.2	0.2%
NC	1.5	2.1%	3.0	2.7%	0.4	0.6%	0.4	0.6%	0.6	0.7%	1.3	1.0%
NH	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
NJ	0.2	0.2%	0.3	0.3%	0.2	0.3%	0.2	0.3%	0.7	0.8%	1.7	1.3%
NY	0.5	0.7%	0.9	0.8%	0.5	0.8%	0.5	0.8%	0.9	1.1%	2.3	1.7%
ОН	5.3	7.2%	8.8	7.9%	5.0	7.3%	5.0	7.3%	6.1	7.2%	9.3	6.8%
PA	7.5	10.3%	13.4	12.0%	11.4	16.5%	11.4	16.5%	10.8	12.7%	21.5	15.8%
RI	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
SC	0.2	0.3%	0.5	0.4%	0.1	0.1%	0.1	0.1%	0.2	0.2%	0.4	0.3%
TN	0.5	0.6%	0.9	0.8%	0.6	0.8%	0.6	0.8%	0.7	0.8%	1.6	1.2%
TX (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
VA	20.0	27.3%	26.3	23.5%	8.9	13.0%	8.9	13.0%	7.7	9.0%	13.8	10.1%
VT	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
WI	0.3	0.4%	0.5	0.4%	0.4	0.5%	0.4	0.5%	0.4	0.5%	0.8	0.6%
wv	3.8	5.2%	6.2	5.5%	5.4	7.9%	5.4	7.9%	4.6	5.4%	7.0	5.1%

Monitor Name/ID	P.G. Equesti	rian Ctr., MD	2403	38003	Leroy High	School, MA	25005	1002	Ancora St.	Hospital, NJ	34007	1001
	Exceeda	nce Avg.	4 th Hig	h Avg.	Exceeda	ance Avg.	4 th Hig	h Avg.	Exceed	ance Avg.	4 th Hig	h Avg.
Sector	Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
AL (Partial)	0.9	1.1%	1.1	1.2%	0.2	0.4%	0.2	0.4%	0.1	0.1%	0.1	0.1%
AR (Partial)	0.2	0.3%	0.3	0.3%	0.3	0.4%	0.3	0.4%	0.3	0.4%	0.3	0.4%
ст	0.0	0.0%	0.0	0.0%	6.5	10.0%	6.5	10.0%	0.0	0.1%	0.0	0.1%
DC	4.3	5.8%	5.4	6.0%	0.1	0.2%	0.1	0.2%	0.0	0.0%	0.0	0.0%
DE	0.3	0.4%	0.4	0.4%	0.6	0.9%	0.6	0.9%	3.4	4.6%	3.4	4.6%
GA (Partial)	0.5	0.6%	0.6	0.6%	0.3	0.4%	0.3	0.4%	0.1	0.1%	0.1	0.1%
IA (Partial)	0.1	0.2%	0.2	0.2%	0.2	0.3%	0.2	0.3%	0.6	0.8%	0.6	0.8%
IL	1.2	1.6%	1.4	1.6%	1.4	2.2%	1.4	2.2%	2.7	3.7%	2.7	3.7%
IN	3.3	4.5%	4.0	4.5%	1.9	2.9%	1.9	2.9%	2.6	3.6%	2.6	3.6%
КҮ	3.8	5.1%	4.7	5.2%	1.1	1.7%	1.1	1.7%	1.5	2.0%	1.5	2.0%
LA (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
MA	0.0	0.0%	0.0	0.0%	2.9	4.4%	2.9	4.4%	0.0	0.0%	0.0	0.0%
MD	21.2	28.5%	24.0	26.9%	2.8	4.3%	2.8	4.3%	1.3	1.8%	1.3	1.8%
ME	0.0	0.0%	0.0	0.0%	0.1	0.1%	0.1	0.1%	0.0	0.0%	0.0	0.0%
MI	1.3	1.7%	1.6	1.8%	0.9	1.4%	0.9	1.4%	3.1	4.2%	3.1	4.2%
MN (Partial)	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.2	0.3%	0.2	0.3%
MO (Partial)	1.1	1.5%	1.4	1.5%	0.7	1.0%	0.7	1.0%	1.2	1.7%	1.2	1.7%
MS (Partial)	0.1	0.1%	0.1	0.1%	0.1	0.2%	0.1	0.2%	0.1	0.1%	0.1	0.1%
NC	0.2	0.3%	0.2	0.3%	0.9	1.4%	0.9	1.4%	0.1	0.1%	0.1	0.1%
NH	0.0	0.0%	0.0	0.0%	0.1	0.1%	0.1	0.1%	0.0	0.0%	0.0	0.0%
NJ	0.6	0.8%	0.7	0.8%	7.0	10.7%	7.0	10.7%	14.5	19.8%	14.5	19.8%
NY	0.4	0.6%	0.6	0.6%	17.4	26.7%	17.4	26.7%	3.2	4.3%	3.2	4.3%
ОН	6.8	9.2%	8.0	9.0%	2.8	4.4%	2.8	4.4%	6.5	8.9%	6.5	8.9%
PA	8.5	11.5%	10.6	11.9%	8.1	12.5%	8.1	12.5%	27.8	38.0%	27.8	38.0%
RI	0.0	0.0%	0.0	0.0%	3.6	5.6%	3.6	5.6%	0.0	0.0%	0.0	0.0%
SC	0.1	0.2%	0.2	0.2%	0.2	0.3%	0.2	0.3%	0.0	0.0%	0.0	0.0%
TN	1.0	1.3%	1.2	1.3%	0.5	0.8%	0.5	0.8%	0.2	0.2%	0.2	0.2%
TX (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
VA	13.3	17.9%	16.6	18.6%	3.0	4.6%	3.0	4.6%	0.7	0.9%	0.7	0.9%
VT	0.0	0.0%	0.0	0.0%	0.0	0.1%	0.0	0.1%	0.0	0.0%	0.0	0.0%
WI	0.2	0.3%	0.3	0.3%	0.3	0.4%	0.3	0.4%	1.0	1.4%	1.0	1.4%
WV	4.8	6.4%	5.8	6.4%	1.1	1.6%	1.1	1.6%	2.1	2.8%	2.1	2.8%

Monitor Name/ID	Collier's Mill, NJ		340290006		Clarksb	oro, NJ	34015	0002	Susan Wag	gner HS, NY	36085	60067
	Exceedan	ice Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.
State	Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
AL (Partial)	0.4	0.5%	0.6	0.6%	0.5	0.6%	0.6	0.7%	0.4	0.5%	0.9	0.7%
AR (Partial)	0.2	0.3%	0.3	0.3%	0.2	0.2%	0.2	0.2%	0.1	0.1%	0.2	0.2%
СТ	0.7	1.0%	1.3	1.1%	0.1	0.1%	0.1	0.2%	0.7	0.8%	1.3	1.0%
DC	0.1	0.1%	0.1	0.1%	0.5	0.6%	0.6	0.6%	0.1	0.2%	0.3	0.2%
DE	1.1	1.5%	1.8	1.6%	4.1	5.2%	4.9	5.2%	1.1	1.4%	2.2	1.8%
GA (Partial)	0.4	0.5%	0.6	0.6%	0.5	0.6%	0.6	0.7%	0.5	0.6%	1.1	0.8%
IA (Partial)	0.4	0.5%	0.6	0.5%	0.3	0.4%	0.4	0.4%	0.3	0.3%	0.5	0.4%
IL	1.3	1.9%	2.0	1.8%	1.6	2.0%	1.9	2.0%	1.5	1.8%	2.5	2.0%
IN	1.4	2.0%	2.2	1.9%	1.8	2.4%	2.1	2.3%	1.8	2.2%	2.9	2.3%
кү	1.9	2.7%	3.1	2.8%	2.2	2.8%	2.7	2.9%	2.0	2.3%	3.6	2.8%
LA (Partial)	0.0	0.0%	0.1	0.1%	0.0	0.0%	0.1	0.1%	0.0	0.0%	0.0	0.0%
MA	0.8	1.1%	1.4	1.2%	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.1	0.1%
MD	2.2	3.2%	3.8	3.4%	11.2	14.4%	14.0	14.9%	4.4	5.2%	8.5	6.7%
ME	0.1	0.2%	0.3	0.2%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
MI	1.3	1.9%	2.1	1.9%	1.7	2.1%	2.0	2.1%	1.5	1.8%	2.5	2.0%
MN (Partial)	0.1	0.2%	0.2	0.2%	0.1	0.2%	0.1	0.2%	0.1	0.1%	0.2	0.2%
MO (Partial)	0.6	0.9%	1.0	0.9%	0.7	0.9%	0.9	0.9%	0.6	0.7%	1.1	0.8%
MS (Partial)	0.1	0.1%	0.2	0.2%	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.2	0.1%
NC	0.7	1.0%	1.2	1.1%	0.5	0.6%	0.6	0.6%	0.5	0.6%	0.9	0.7%
NH	0.2	0.3%	0.3	0.3%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
NJ	15.4	22.1%	20.6	18.4%	7.4	9.5%	8.5	9.1%	22.2	26.6%	27.0	21.3%
NY	10.7	15.3%	18.6	16.6%	2.1	2.7%	2.6	2.8%	15.3	18.4%	24.8	19.5%
ОН	3.2	4.5%	4.7	4.2%	5.7	7.3%	6.5	6.9%	3.8	4.6%	5.7	4.5%
PA	20.8	29.8%	35.1	31.5%	26.4	33.9%	31.7	33.6%	18.4	22.1%	26.3	20.7%
RI	0.2	0.2%	0.3	0.3%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
SC	0.2	0.3%	0.3	0.3%	0.1	0.1%	0.1	0.1%	0.2	0.2%	0.3	0.3%
TN	0.8	1.2%	1.4	1.3%	0.6	0.8%	0.8	0.8%	0.8	0.9%	1.5	1.1%
TX (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
VA	1.2	1.7%	2.1	1.8%	5.2	6.7%	6.5	6.9%	3.4	4.1%	6.6	5.2%
VT	0.1	0.1%	0.2	0.1%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
WI	0.7	1.0%	1.2	1.1%	0.7	0.9%	0.9	0.9%	0.6	0.8%	1.0	0.8%
WV	2.5	3.6%	4.2	3.8%	3.6	4.6%	4.4	4.7%	2.7	3.2%	4.6	3.6%

Monitor Name/ID	Holtsville, NY		361030009		Babylo	on, NY	36103	0002	NEA	, PA	421010024	
	Exceedar	nce Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.
State	Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
AL (Partial)	0.1	0.2%	0.2	0.2%	0.2	0.3%	0.4	0.3%	0.3	0.5%	0.3	0.5%
AR (Partial)	0.1	0.1%	0.1	0.1%	0.1	0.2%	0.2	0.2%	0.1	0.1%	0.1	0.1%
СТ	2.6	3.7%	4.8	4.9%	0.8	0.9%	1.3	1.1%	0.1	0.1%	0.1	0.1%
DC	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.4	0.5%	0.4	0.5%
DE	0.7	1.0%	0.9	1.0%	0.4	0.5%	0.7	0.6%	3.0	4.1%	3.0	4.1%
GA (Partial)	0.2	0.2%	0.3	0.3%	0.2	0.3%	0.4	0.3%	0.6	0.8%	0.6	0.8%
IA (Partial)	0.2	0.3%	0.3	0.3%	0.2	0.3%	0.4	0.3%	0.2	0.3%	0.2	0.3%
IL	1.0	1.4%	1.7	1.7%	1.3	1.6%	2.1	1.9%	1.2	1.6%	1.2	1.6%
IN	1.1	1.6%	1.9	2.0%	1.5	1.8%	2.5	2.3%	1.7	2.4%	1.7	2.4%
КҮ	0.9	1.2%	1.6	1.6%	1.2	1.4%	2.0	1.8%	2.3	3.2%	2.3	3.2%
LA (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
MA	0.1	0.2%	0.2	0.2%	0.1	0.1%	0.1	0.1%	0.0	0.0%	0.0	0.0%
MD	2.4	3.5%	3.8	3.9%	2.2	2.6%	3.7	3.4%	11.7	16.2%	11.7	16.2%
ME	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
MI	1.5	2.2%	2.5	2.6%	2.1	2.5%	3.0	2.7%	1.1	1.5%	1.1	1.5%
MN (Partial)	0.1	0.2%	0.2	0.2%	0.2	0.2%	0.3	0.3%	0.1	0.1%	0.1	0.1%
MO (Partial)	0.5	0.7%	0.9	0.9%	0.6	0.8%	1.1	1.0%	0.8	1.1%	0.8	1.1%
MS (Partial)	0.0	0.0%	0.1	0.1%	0.1	0.1%	0.1	0.1%	0.0	0.1%	0.0	0.1%
NC	0.6	0.9%	1.0	1.1%	0.5	0.6%	0.8	0.8%	0.4	0.6%	0.4	0.6%
NH	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
NJ	11.9	17.1%	15.7	16.2%	17.4	20.9%	20.2	18.3%	3.0	4.1%	3.0	4.1%
NY	28.8	41.5%	36.5	37.5%	33.9	40.8%	40.8	37.0%	0.5	0.6%	0.5	0.6%
он	2.6	3.7%	3.9	4.1%	3.2	3.9%	4.9	4.5%	5.1	7.0%	5.1	7.0%
PA	9.6	13.9%	13.0	13.4%	12.0	14.5%	17.1	15.6%	30.0	41.4%	30.0	41.4%
RI	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
SC	0.1	0.2%	0.2	0.2%	0.1	0.1%	0.2	0.2%	0.1	0.2%	0.1	0.2%
TN	0.4	0.5%	0.7	0.7%	0.5	0.6%	0.9	0.8%	0.5	0.7%	0.5	0.7%
TX (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
VA	2.1	3.0%	3.4	3.5%	2.0	2.4%	3.4	3.1%	4.5	6.3%	4.5	6.3%
VT	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
WI	0.5	0.7%	0.9	0.9%	0.6	0.7%	0.9	0.8%	0.3	0.4%	0.3	0.4%
WV	1.3	1.8%	2.1	2.1%	1.6	1.9%	2.5	2.3%	4.3	6.0%	4.3	6.0%

Monitor Name/ID	Baxte	Baxter, PA 421011002			AJ, RI 440030002				Aurora	Hills, VA	510130020	
	Exceedar	nce Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.	Exceeda	nce Avg.	4 th Hig	h Avg.
Sector	Total	%	Total	%	Total	%	Total	%	Total	%	Total	%
AL (Partial)	0.3	0.5%	0.3	0.5%	0.2	0.3%	0.2	0.3%	0.5	0.6%	0.9	0.8%
AR (Partial)	0.1	0.1%	0.1	0.1%	0.2	0.4%	0.2	0.4%	0.2	0.2%	0.3	0.2%
СТ	0.1	0.1%	0.1	0.1%	9.3	14.0%	9.3	14.0%	0.0	0.0%	0.0	0.0%
DC	0.4	0.5%	0.4	0.5%	0.1	0.1%	0.1	0.1%	6.6	8.3%	9.2	8.2%
DE	2.8	4.1%	2.8	4.1%	0.6	0.9%	0.6	0.9%	0.0	0.1%	0.1	0.1%
GA (Partial)	0.6	0.8%	0.6	0.8%	0.2	0.3%	0.2	0.3%	0.2	0.2%	0.3	0.2%
IA (Partial)	0.2	0.3%	0.2	0.3%	0.2	0.2%	0.2	0.2%	0.2	0.2%	0.3	0.2%
IL	1.1	1.6%	1.1	1.6%	1.6	2.3%	1.6	2.3%	1.4	1.8%	2.3	2.0%
IN	1.7	2.4%	1.7	2.4%	1.9	2.8%	1.9	2.8%	3.2	4.1%	5.1	4.5%
КҮ	2.2	3.2%	2.2	3.2%	1.2	1.8%	1.2	1.8%	2.5	3.2%	4.1	3.6%
LA (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
MA	0.0	0.0%	0.0	0.0%	0.2	0.3%	0.2	0.3%	0.0	0.0%	0.0	0.0%
MD	11.3	16.2%	11.3	16.2%	2.4	3.7%	2.4	3.7%	16.2	20.5%	22.9	20.5%
ME	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
МІ	1.1	1.5%	1.1	1.5%	1.2	1.9%	1.2	1.9%	1.4	1.8%	2.3	2.0%
MN (Partial)	0.1	0.1%	0.1	0.1%	0.1	0.2%	0.1	0.2%	0.1	0.1%	0.1	0.1%
MO (Partial)	0.8	1.1%	0.8	1.1%	0.6	0.9%	0.6	0.9%	0.9	1.2%	1.6	1.4%
MS (Partial)	0.0	0.1%	0.0	0.1%	0.1	0.2%	0.1	0.2%	0.1	0.1%	0.1	0.1%
NC	0.4	0.6%	0.4	0.6%	0.7	1.1%	0.7	1.1%	1.4	1.8%	2.5	2.2%
NH	0.0	0.0%	0.0	0.0%	0.0	0.1%	0.0	0.1%	0.0	0.0%	0.0	0.0%
NJ	2.9	4.1%	2.9	4.1%	7.1	10.8%	7.1	10.8%	0.1	0.1%	0.1	0.1%
NY	0.5	0.6%	0.5	0.6%	19.1	28.8%	19.1	28.8%	0.3	0.4%	0.5	0.4%
ОН	4.9	7.0%	4.9	7.0%	3.7	5.6%	3.7	5.6%	7.2	9.2%	10.0	9.0%
PA	28.8	41.4%	28.8	41.4%	10.0	15.0%	10.0	15.0%	8.6	10.9%	14.0	12.5%
RI	0.0	0.0%	0.0	0.0%	0.9	1.4%	0.9	1.4%	0.0	0.0%	0.0	0.0%
SC	0.1	0.2%	0.1	0.2%	0.1	0.2%	0.1	0.2%	0.2	0.2%	0.3	0.3%
TN	0.5	0.7%	0.5	0.7%	0.5	0.8%	0.5	0.8%	0.5	0.6%	0.8	0.7%
TX (Partial)	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
VA	4.4	6.3%	4.4	6.3%	1.8	2.7%	1.8	2.7%	22.4	28.5%	27.8	24.9%
VT	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
WI	0.3	0.4%	0.3	0.4%	0.4	0.6%	0.4	0.6%	0.4	0.5%	0.6	0.5%
WV	4.2	6.0%	4.2	6.0%	1.5	2.3%	1.5	2.3%	4.3	5.4%	5.8	5.2%